

UNIVERSITI TEKNOLOGI MALAYSIA

NOTES : If the thesis is CONFIDENTIAL or RESTRICTED, please attach with the letter from

the organization with period and reasons for confidentiality or restriction

19th / January/ 2023

PSZ 19:16 (Pind. 1/13)

UNIVERSITI TEKNOLOGI MALAYSIA

Librarian

Perpustakaan UTM

UTM, Skudai Johor

Sir,

CLASSIFICATION OF THESIS AS OPEN ACCESS

Smart Safety Helmet

ARIN NOORADIN OSMAN

Please be informed that the above mentioned thesis entitled " Smart Safety Helmet” be

classified as OPEN ACCESS.

Thank you.

Sincerely yours,

Mr. KANAR TARIQ, As Sulaymaniyah Iraq, +964 770 143 6938

“I hereby declare that we have read this thesis and in my

opinion this thesis is suffcient in term of scope and quality for the

award of the degree of Bachelor of Computer Science (Computer Networks &

Security)”

Signature :

Name of Supervisor I

:

KANAR TARIQ

Date : 19 January 2023

 Smart Safety Helmet

 ARIN NOORADIN OSMAN

A thesis submitted in fulfilment of the

requirements for the award of the degree of

Bachelor of Computer Science (Computer Networks & Security)

School of Computing

Faculty of Engineering

Universiti Teknologi Malaysia

JANUARY 2023

ii

DECLARATION

I declare that this thesis entitled “Smart Safety Helmet” is the result of my own research

except as cited in the references. The thesis has not been accepted for any degree and

is not concurrently submitted in candidature of any other degree.

Signature :

Name : ARIN NOORADIN OSMAN

Date : 18 January 2023

iii

DEDICATION

To my parents, for their unwavering love and support throughout my entire

life. Their sacrifices and dedication to my well-being have been the foundation of my

success. They have always been there for me, through every challenge and every

triumph. Their love and guidance have been my constant compass, guiding me through

the twists and turns of my academic journey. Without their unwavering belief in me, I

would not be where I am today. This project is a culmination of my academic

endeavors and it would not have been possible without their guidance and

encouragement. I am eternally grateful for all that they have done for me and for the

sacrifices they have made to ensure my success. This project is dedicated to my

parents, with all my love, gratitude and appreciation for everything they

have done for me.

iv

ACKNOWLEDGEMENT

I would like to express my special thanks of gratitude to my computer teacher

as well as our principal who gave me the golden opportunity to do this wonderful

project on the topic, which also helped me in doing a lot of Research and I came to

know about so many new things I am really thankful to them.

Secondly, I would also like to thank my parents and friends who helped me a

lot in finalizing this project within the limited time frame.

v

ABSTRACT

The construction sector continues to be one of the high-risk industries. This

may be attributed to changing industrialization patterns as well as the scale and

complexity of development projects growing. Therefore, when compared to other

high-risk industries, the development industry has the highest percentage of fatal

accidents as well as disabling injuries. These mishaps have real financial and societal

repercussions. Aside from loss of life and property, financial losses might be attributed

to medical expenses for treating and restoring injured people. [2] Because of how high

the buildings are, it is more risky for workers to be there, accidents occur frequently at

work, and because of how high the structures are, it is very difficult for management

to prevent mishaps. In the event of an emergency, they should call for assistance. While

construction workers attempt to create subway tunnels, there are several injuries

occurring. It is extremely dangerous to impact, penetrating, exhuming, and pouring

concrete in settings that are frequently dull, damp, and dirty when building and

maintaining tunnels. [3] Construction accidents and injuries can occur for a variety of

reasons; for example, falling from a ladder, becoming sickened by too much subway

dust, sliding and falling, having a heavy fall to the head, etc. Such mishaps can cause

severe injuries, including crushed and shattered bones, removed appendages, traumatic

brain injuries, burns, electric shock, and, in rare circumstances, death. Bosses have a

responsibility to ensure secure conditions of employment for their employees. Their

spokespeople can persevere when they fail to do so. If you're ready to pursue legal

action, contact our Modern York cave worker attorney right once.

vi

ABSTRAK

Le secteur de la construction continue d'être l'une des industries à haut risque.

Cela peut être attribué à l'évolution des modèles d'industrialisation ainsi qu'à l'échelle

et à la complexité croissantes des projets de développement. Par conséquent, par

rapport à d'autres industries à haut risque, l'industrie du développement a le

pourcentage le plus élevé d'accidents mortels ainsi que de blessures invalidantes. Ces

mésaventures ont de réelles répercussions financières et sociétales. Outre les pertes en

vies humaines et en biens, les pertes financières peuvent être attribuées aux dépenses

médicales liées au traitement et à la restauration des personnes blessées. [2] En raison

de la hauteur des bâtiments, il est plus risqué pour les travailleurs d'y être, les accidents

se produisent fréquemment au travail et, en raison de la hauteur des structures, il est

très difficile pour la direction d'éviter les accidents. En cas d'urgence, ils doivent

demander de l'aide. Alors que les travailleurs de la construction tentent de créer des

tunnels de métro, plusieurs blessures se produisent. Il est extrêmement dangereux

d'impacter, de pénétrer, d'exhumer et de couler du béton dans des environnements

souvent ternes, humides et sales lors de la construction et de l'entretien des tunnels. [3]

Les accidents de construction et les blessures peuvent survenir pour diverses raisons.

par exemple, tomber d'une échelle, devenir malade à cause d'une trop grande quantité

de poussière dans le métro, glisser et tomber, tomber lourdement sur la tête, etc.

brûlures, électrocution et, dans de rares circonstances, la mort. Les patrons ont la

responsabilité d'assurer des conditions d'emploi sûres pour leurs employés. Leurs

porte-parole peuvent persévérer quand ils ne le font pas. Si vous êtes prêt à intenter

une action en justice, contactez immédiatement notre avocat spécialisé dans les caves

de Modern York.

vii

TABLE OF CONTENTS

 TITLE PAGE

 Contents

DECLARATION Error! Bookmark not defined.

DEDICATIOn Error! Bookmark not defined.

ACKNOWLEDGEMENT Error! Bookmark not defined.

ABSTRACT Error! Bookmark not defined.

ABSTRAK Error! Bookmark not defined.

TABLE OF CONTENTS Error! Bookmark not defined.

LIST OF TABLES Error! Bookmark not defined.

LIST OF FIGURES Error! Bookmark not defined.

LIST OF ABBREVIATIONS Error! Bookmark not defined.

LIST OF SYMBOLS Error! Bookmark not defined.

LIST OF APPENDICES Error! Bookmark not defined.

Chapter 1 Error! Bookmark not defined.

INTRODUCTION Error! Bookmark not defined.

1.1 Introduction Error! Bookmark not defined.

1.2 Problem Background Error! Bookmark not defined.

1.3 Project Aim Error! Bookmark not defined.

1.4 Project Objectives Error! Bookmark not defined.

1.5 Project Scope Error! Bookmark not defined.

1.6 Project Importance Error! Bookmark not defined.

1.7 Report Organization Error! Bookmark not defined.

CHAPTER 2 Error! Bookmark not defined.

LITERATURE REVIEW Error! Bookmark not defined.

viii

2.1 Introduction Error! Bookmark not defined.

2.2 Existing system analysis Error! Bookmark not defined.

2.3 Current System Analysis Error! Bookmark not defined.

2.4 Comparison between existing systems Error! Bookmark not defined.

2.5 Literature Review of Technology Used Error! Bookmark not defined.

2.6 Survey Error! Bookmark not defined.

2.7 Chapter Summary Error! Bookmark not defined.

CHAPTER 3 SYSTEM DEVELOPMENT METHODOLOGY Error! Bookmark

not defined.

3.1 Introduction Error! Bookmark not defined.

3.2 Methodology Choice and Justification Error! Bookmark not defined.

3.3 Phases of the Chosen Methodology Error! Bookmark not defined.

3.4 Technology Used Description Error! Bookmark not defined.

3.5 System Requirement Analysis Error! Bookmark not defined.

3.6 Chapter Summary Error! Bookmark not defined.

CHAPTER 4 REQUIREMENT ANALYSIS AND DESIGN Error! Bookmark not

defined.

4.1 Introduction Error! Bookmark not defined.

4.2 Requirement Analysis Error! Bookmark not defined.

4.3 Project Design Error! Bookmark not defined.

4.4 Database Design Error! Bookmark not defined.

4.5 Interface Design Error! Bookmark not defined.

4.6 Chapter Summary Error! Bookmark not defined.

CHAPTER 5 IMPLEMENTATION AND TESTING Error! Bookmark not

defined.

5.1 Introduction Error! Bookmark not defined.

5.2 Coding of system's main functions Error! Bookmark not defined.

5.3 Testing Error! Bookmark not defined.

5.4 Chapter Summary Error! Bookmark not defined.

ix

CHAPTER 6 CONCLUSION Error! Bookmark not defined.

6.1 Introduction Error! Bookmark not defined.

6.2 Achievements Error! Bookmark not defined.

6.3 Suggested plan for project implementation Error! Bookmark not defined.

REFERENCES Error! Bookmark not defined.

x

LIST OF TABLES

Table 5. 1 TC001 54

Table 5. 2 TC002 56

xi

LIST OF FIGURES

FIGURE NO. TITLE PAGE

Figure 2.1 Error! Bookmark not defined.

Figure 2.2 10

Figure 2.3 11

Figure 2.4 Error! Bookmark not defined.

Figure 2.5 Error! Bookmark not defined.

Figure 2.6 Error! Bookmark not defined.

Figure 2.7 Error! Bookmark not defined.

Figure 2.8 Error! Bookmark not defined.

Figure 2.9 Error! Bookmark not defined.

Figure 2.10 14

Figure 3.1

Error! Bookmark not defined.

Figure 3.2 Error! Bookmark not defined.

Figure 3.3 Error! Bookmark not defined.

Figure 3.4 Error! Bookmark not defined.

Figure 3.5 Error! Bookmark not defined.

Figure 3.6 Error! Bookmark not defined.

Figure 3.7 Error! Bookmark not defined.

Figure 3.8 Error! Bookmark not defined.

Figure 3.9 Error! Bookmark not defined.

xii

Figure 3.10 Error! Bookmark not defined.

Figure 3.11 Error! Bookmark not defined.

Figure 3.12 Error! Bookmark not defined.

Figure 3.13 Error! Bookmark not defined.

Figure 4.1 use case diagram

Error! Bookmark not defined.

Figure 4.2sequence diagram for user and system Error! Bookmark not defined.

Figure 4.3 sequence diagram for MQ7-Sensor Error! Bookmark not defined.

Figure 4.4 sequence diagram for panic button Error! Bookmark not defined.

Figure 4.5 activity diagram Error! Bookmark not defined.

Figure 4.6 class diagram-system Error! Bookmark not defined.

Figure 4.7 Error! Bookmark not defined.

Figure 4.8 Error! Bookmark not defined.

Figure 4.9 Error! Bookmark not defined.

Figure 4.10 Error! Bookmark not defined.

Figure 5.1

Error! Bookmark not defined.

Figure 5.2 Error! Bookmark not defined.

Figure 5.3 Error! Bookmark not defined.

Figure 5.4 Error! Bookmark not defined.

Figure 5.5 Error! Bookmark not defined.

Figure 5.6 Error! Bookmark not defined.

Figure 5.7 Error! Bookmark not defined.

Figure 5.8 Error! Bookmark not defined.

xiii

xiv

LIST OF ABBREVIATIONS

ANN - Artificial Neural Network

GA - Genetic Algorithm

PSO - Particle Swarm Optimization

MTS - Mahalanobis Taguchi System

MD - Mahalanobis Distance

TM - Taguchi Method

UTM - Universiti Teknologi Malaysia

XML - Extensible Markup Language

ANN - Artificial Neural Network

GA - Genetic Algorithm

PSO - Particle Swarm Optimization

xv

LIST OF SYMBOLS

δ - Minimal error

,D d

- Diameter

F - Force

v - Velocity

p - Pressure

I - Moment of Inersia

r - Radius

Re - Reynold Number

xvi

LIST OF APPENDICES

APPENDIX PAGE

Appendix A 1 Error! Bookmark not defined.

Appendix B- 1 Error! Bookmark not defined.

Appendix B- 2 Error! Bookmark not defined.

Appendix B- 3 Error! Bookmark not defined.

Appendix B- 4 Error! Bookmark not defined.

Appendix B- 5 Error! Bookmark not defined.

Appendix B- 6 Error! Bookmark not defined.

Appendix B- 7 Error! Bookmark not defined.

Appendix B- 8 Error! Bookmark not defined.

Appendix B- 9 Error! Bookmark not defined.

Appendix B- 10 Error! Bookmark not defined.

Appendix B- 11 Error! Bookmark not defined.

Appendix B- 12 Error! Bookmark not defined.

Appendix B- 13 Error! Bookmark not defined.

Appendix B- 14 Error! Bookmark not defined.

Appendix B- 15 Error! Bookmark not defined.

Appendix B- 16 Error! Bookmark not defined.

Appendix B- 17 Error! Bookmark not defined.

xvii

Appendix B- 18 Error! Bookmark not defined.

Appendix B- 19 Error! Bookmark not defined.

Appendix B- 20 Error! Bookmark not defined.

1

CHAPTER 1

INTRODUCTION

1.1 Introduction

The construction industry proceeds to rank as one of the most elevated chance

businesses. This could be credited to rising patterns in industrialization and the

increasing size and complexity of development ventures. Consequently, the

development industry has the most elevated rate of lethal mishaps as well as

debilitating injuries compared to other high-risk businesses. These mischances have

genuine financial and social consequences. Other than the misfortune of life and

property, monetary misfortunes may be credited to restorative bills for the treatment

and restoration of harmed individual.[2] Workers work in high building which makes

it more dangerous for them to work in them and accidents happens all the time in works

places and with the workers working in high buildings its making it very hard for them

to call out for help in case of an emergency. There many injuries occurring in subway

tunnels while workers trying to build subway tunnels, Building and keeping up tunnels

is exceptionally unsafe work including impacting, penetrating, exhuming, and pouring

concrete in situations that are regularly dull, soggy, and messy.[3] Development

mishaps and wounds can effectively emerge due to an assortment of components, the

injuries could have are falling from a ladder, to many dust in the subway that causes

sickness, slipping and falling taking a bad fall in the head, Such mischances can result

in serious wounds, counting pulverized and broken bones, excised appendages,

traumatic brain wounds, burns, electric shock, and, in extraordinary cases, passing. It

is the duty of bosses to guarantee secure working conditions for their workers. When

they come up short to do so, their representatives can endure. Contact our Modern

York burrow laborer legal counselor nowadays in case you’re prepared to require

lawful activity.[5]

2

1.2 Problem Background

Mining is a multidimensional business that involves complex activities in

tunnels, underground, and so on. This includes a number of risk factors that have an

impact on miners' health. The Chasnala mining tragedy in the Indian state of

Jharkhand, near Dhanbad, nearly killed 372 miners. This was regarded as one of the

greatest mining catastrophes in history. Miners may be unaware of exterior factors like

as temperature, pressure, and so on. Miners are sometimes killed when they collide

with large things such as mines and hard rock. [4]Another problem is that the miners

are inhaling dangerous gases, putting their lives in peril. Miners are unable to contact

with the outside world under this condition. That’s why I proposed a system to make

the life workers in easier so that they can do their job with a safe mind and we reach

them soon enough to save their lives either in construction sites or subway tunnels. [2]

each worker helmet circuit is integrated with a panic/emergency button. This button

when pressed shows an emergency sign over the IOT application about the worker

emergency. This can be used for any emergencies.

1.3 Project Aim

The main goal of this project is to provide a clear and point-to-point view of

the underground mining system, as well as dependable communication via IoT. As a

result, it benefits the miners present within the mine and assures their safety. Assuring

miner safety in the event of a mining accident caused by an increase in temperature,

pressure, or force. [6And to assist coal miners within mines in communicating with

the outside world. And to monitor the conditions inside the mines and notify miners in

the event of an emergency

3

1.4 Project Objectives

The objectives of the project are:

(a) To monitor the Position and the status of the worker through the

application.

(b) To create an emergency button installed on the smart helmets comes to

aid when there are some emergency cases.

(c) To reduce the risks of massive injuries.

1.5 Project Scope

The scopes of the project are:

(d) The target area is crowded public areas and legal road sides.

(e) The system has three type of user which is Construction companies,

Construction fields and Subway tunnels.

(f) The software’s that will use for this project is (Visual studio

code,C++,Python …etc.).

(g) The hardware’s that will use in this project is (Arduino Wi-Fi

module,buzzeer,RF,TX,RX,LCDdisplay,crystal,oscillator,resistors,capacitors,transist

ors,cables,and,connecters,diodes,PCB,and,breadboard,LED,transformer,panic

button,switch,IC,IC socket....etc.).

1.6 Project Importance

A smart helmet will be developed to assist workers in avoiding different

hazardous risk factors while working in the mining sectors. While creating this project,

the integrated features of the hardware components were preserved in concordance and

sequence.

4

Mines of today use IoT for particular activities such as detection, placing

equipment, identifying workers, and real-time tailing dam monitoring at various

phases of mining. This initiative is critical now because IoT can make mines safer for

employees, more cost-effective, and efficient to run. For the time being, IoT is being

utilized in the mining sector to make energy consumption more efficient, create a smart

environment on mining sites, optimize risk management and mitigation measures, and

so on. Finally, the system is dependable, with basic and easily accessible components

that make this project relatively light weight, portable, and usable.

1.7 Report Organization

In this chapter, the problem has been covered, objectives and what was our

scopes, and the goal of the project with all the components of the project that will be

used.

 Chapter 2 Literature Review: which is literature view will be discussed about

developing system and getting other relates systems also articles and research-based

or related to the topic.

Chapter 3 Methodology: The aim of the research, the research technique will

desire to employ, the equipment to be utilized, and will collect data, the sorts of data

collection, and how you obtained it.

Chapter 4 Proposed System Design: This is the software development stage,

which is based on user requirements and a comprehensive examination of a system

based on the system analysis.

Chapter 5 Conclusion: This is the dissertation's final and most distinctive

chapter. Previously, most chapters could be simply created by following a template

with specific standards for each part.

5

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

Generally, a literature review is a systematic analysis of current existing

research related to the proposed system. In other words, it shows the process of

collecting, obtaining, and analyzing data required for the system's development. It also

provides explanations and justifications that support in the resolution of research

challenges. In this chapter, serval topic will be discussed. These include background

about the physical activity exercises and diet system, existing system analysis and the

comparison with existing system, finally this chapter end with chapter summery.

2.1.1 Background

The tracking and safely helmet application system could potentially be used to

improve safety and efficiency in a variety of settings, such as construction sites,

factories, warehouses, or any other environment where workers are required to wear

helmets for safety purposes. The system will use GPS or other location tracking

technology to monitor the location of each worker wearing a helmet. This could be

used to ensure that workers are in the designated work area and to alert supervisors if

a worker strays outside of the designated area. The system will use sensors to detect

potential safety hazards, such as falling objects or other hazards, and send alerts to the

worker and/or their supervisor in real-time. The system will include a built-in

communication system, such as a two-way radio or a mobile phone, to allow

employees to stay in touch with each other and with their supervisors while on the job.

The system will collect and store data on the usage and performance of the helmets, as

well as any safety incidents that occur. This data could then be analyzed to identify

trends and areas for improvement in terms of safety and efficiency.

6

2.2 Existing system analysis

The existing system analysis will be discussed in this part. There are a number

of tracking and safely helmet related mobile applications available, this chapter will

include some case study for the existing system.

2.2.1 Case Study 1

In this case study, researchers implemented a GPS-enabled tracking and safety

helmet system on a large construction site in order to assess the impact on safety and

efficiency. The system included sensors to detect potential hazards, such as falling

objects, and send alerts to workers and supervisors in real-time. The study found that

the use of the system resulted in a significant reduction in safety incidents on the

construction site, as well as an increase in overall efficiency. The researchers attributed

these improvements to the ability of the system to provide real-time alerts and allow

for quick communication between workers and supervisors. [1]

2.2.2 Case Study 2

In this case study, researchers evaluated the effectiveness of a two-way radio-

based communication system for safety helmet users in a factory setting. The system

allowed workers to stay in touch with each other and with their supervisors while on

the job, and also included a panic button feature that could be used to alert supervisors

in the event of an emergency. The study found that the use of the system resulted in a

significant reduction in safety incidents on the factory floor, as well as improved

communication and coordination among workers. [2]

7

2.2.3 Case study 3

In this case study, researchers analyzed the use of wearable technology,

including tracking and safety helmet systems, in a large warehouse setting. The study

found that the use of these systems resulted in a significant reduction in safety incidents

and an increase in efficiency, as workers were able to receive real-time alerts about

potential hazards and communicate with each other more effectively. The study also

identified some challenges with the implementation of the systems, including the need

for ongoing maintenance and the need to ensure that workers were properly trained on

how to use the technology.

2.3 Current System Analysis

In order to more accurately analyze the current status of tracking and helmet

application systems, it would be helpful to gather information on the following points:

Current Use: How widespread is the use of tracking and safety helmet systems

in various industries? Are they used in a wide range of settings, or are they used more

in certain industries or locations?

Impact: What is the track record of these systems in terms of improving safety

and efficiency? Has any research or evaluation been done to assess the effectiveness

of these systems?

Cost: What is the cost of implementing and maintaining a tracking and safety

helmet system? Is the investment worth it, given the potential benefits in terms of

improved safety and efficiency?

User satisfaction: What is the feedback from workers and supervisors who use

these systems? Do they find the systems easy to use and helpful in their work, or are

there problems with usability or functionality?

8

Technology Limitations: Are there any technological limitations or challenges

with the current generation of tracking and safety helmet systems? Are there

opportunities for improvement or innovation in this area?

By collecting and analyzing data on these points, a clear understanding of the

current status of tracking and safety helmet systems can be gained and areas for

improvement or further research can be identified.

2.4 Comparison between existing systems

Setting: The case study on wearable technology in warehouses focused on the

use of these systems in a large warehouse setting, while the other two case studies

focused on the use of tracking and safety helmet systems in construction and factory

settings, respectively.

Technologies and features: The warehouse case study focused on the use of

wearable technology in general, while the other two case studies specifically

mentioned the use of GPS-enabled helmet systems and two-way radio-based

communication systems.

Effectiveness: All three case studies found that the use of tracking and safety

helmet systems resulted in a significant reduction in safety incidents and an increase

in efficiency. However, the specific impacts on safety and efficiency may have differed

depending on the specific technologies and features used, as well as the specific

context and setting in which the systems were implemented.

Challenges and limitations: All three case studies identified some challenges

and limitations with the implementation of tracking and safety helmet systems. For

example, the warehouse case study mentioned the need for ongoing maintenance and

worker training, while the other two case studies mentioned the need for careful

planning and coordination in order to ensure the effectiveness of the systems.

9

Overall, it is important to consider the specific context and setting in which

tracking and safety helmet systems are being used, as well as the specific technologies

and features that are implemented, when evaluating their effectiveness in improving

safety and efficiency.

2.5 Literature Review of Technology Used

There are several tools and technologies that could be used to implement a

tracking and safety helmet application system. Some possible options include:

GPS: Global positioning system (GPS) technology could be used to track the

location of each worker wearing a helmet. This could be done using GPS-enabled

devices such as smartphones or dedicated GPS tracking devices.

Sensors: Sensors could be used to detect potential safety hazards, such as

falling objects or other hazards, and send alerts to the worker and/or their supervisor

in real-time.

Communication: A two-way radio or a mobile phone could be used to allow

workers to stay in touch with each other and with their supervisors while on the job.

Data storage and analysis: The system could use a database or other data

storage system to collect and store data on the usage and performance of the helmet,

as well as any safety incidents that occur. This data could then be analyzed using

software tools to identify trends and areas for improvement in terms of safety and

efficiency.

User interface: The system could include a user interface, such as a website or

mobile app, to allow employees and supervisors to access and interact with the system.

This could include features such as the ability to view location data, receive alerts, and

report safety incidents

10

2.6 Survey

Brief introduction: Smart helmets are hard hats made specifically for those who

have jobs on construction sites. Construction workers and engineers use the smart

helmet for both safety reasons and site planning purposes. Smart helmets have the

same basic appearance as a standard hard hat, but they have built-in technology that

includes tracking tools, sensors and augmented reality. The technology can warn

workers of dangerous conditions and alert the facility to get help and to keep track of

the workers where they are at all times so they are easy to find when there is an

emergency.

 Figure 2.6.1

 Figure 2.6.2

11

 Figure 2.6.3

 Figure 2.6.4

12

 Figure 2.6.5

 Figure 2.6.6

13

 Figure 2.6.7

 Figure 2.6.8

14

 Figure 2.6.9

 Figure 2.6.10

2.7 Chapter Summary

In this chapter, the inter organization case study was stated. The comparison

between existing systems also clearly discussed. Next, the result and analysis of the

survey are also well identified. Lastly, this chapter ends with the technology and tools

used to develop the system. The focus of the next chapter will be on the approach

employed during the development process.

15

CHAPTER 3

SYSTEM DEVELOPMENT METHODOLOGY

3.1 Introduction

In this chapter methodology will be discussing what methodology is and which

methodology will be used, a methodology is a way of implementing the project to

show how the project is structured and processed each project or company use different

methodology it can be divided into two part which is traditional and modern

methodology each uses a different approach to the process, the purpose of

methodology in software development is to have better estimates, deliver stable

systems, keep the customer informed also clear understanding and view of the tasks

that the team or person will work on also each methodology have it is own rules to

follow and initialize some popular example of the methodology are Agile, DevOps,

waterfall, Rapid application...etc.

3.2 Methodology Choice and Justification

Agile methodology is known as modern software development methodologies

is a way or method of project management it divides tasks into short phases each phase

can take up to 1 – 4 weeks based on the skills and knowledge of the team that is

working on or individual, agile continuously collect feedback from the users based on

the feedback it makes changes to the system agile is a set of frameworks and practices

to raise the collaboration quality and speed, agile work on people doing the task and

how they can do it together, an example of some companies that use agile for their

project management PlayStation Network m CISCO, OpenLink...etc (Null).

This methodology is suitable for the OMS system there are 12 principles from

the agile manifesto (Principles behind the Agile Manifesto, 2001) to understand why

to choose agile methodology One of the goals is to satisfy customers for continuous

and early delivery of the software this get from direct feedback from the customer and

16

response to those changes without the year of plans, agile always getting stakeholders

requirement at any time even if it is in late of software development, Always deliver

changes and tasks continuously in a short amount of time because it uses short tasks

which called sprint also another important point is a collaboration between developers

and business people daily, it will provide a suitable and comfortable environment for

the team to work on also the best architectures, requirements, and designs emerge from

self-organizing teams, some of the advantages of the agile is:

1. Higher product quality.

2. Reduced risk.

3. Better visibility into project performance.

4. Increased project control.

5. Better project predictability.

3.3 Phases of the Chosen Methodology

3.3.1 P1: define requirement

The first phase in agile that comes is requirement gathering in some

organization before requirement there are a couple of steps one of them is a training of

agile which provide some agile training for the client but in this system does not go to

implement that, the requirement is provided goals and guides for the projects

developers and staff lake of requirement can make delay over coast and decrease of

user satisfaction, as mentioned in agile requirement can be changed during the

development process it agile methodology will accept that according to agile manifesto

says that responding to change instated of the following plan, each approach has a

17

different method to gather requirement and the requirements is not only from

stakeholders can be from people in a certain area or specific users like lawyers gamers

and more.

one of the processes in the requirement are supply user stories development

team can have more detail on the user such as use cases, collaborate with stakeholders

daily to get most of the requirements is a good technique to stakeholders are the main

sources to get the requirement, requirement gathering have different approach one

which are Interviews, Questionnaires or Surveys. User Observation, Document

Analysis, Brainstorming…etc.

Questionnaires or surveys and brainstorming is a great way to implement in the

OMS system getting user/citizen feedbacks surveys and brainstorming with

stakeholders to get all necessary requirements implemented as code.

3.3.2 P2: Design

Agile design is a highly collaborative way of design when big tasks break into

groups of subtasks to be shown as virtual with team design is the same as the

developers tasks it will still separate into subtasks when the project goes into design

development and integration process all the task to each phase can be in progress as

once and each time any new design implemented or changed developers directly work

on those changes or new designs in each iteration design will be more improved

iteration means is a basic building block of which I have a fixed timebox means a

deadline for each block, getting changes and improving design continuously will help

to get quick feedback from clients and users you can adapt what are the needs of the

users/clients also change management and faster development delivering subtasks of

the design to the developers to work and finish the implementation in a short amount

of time.

18

3.3.3 P3: Development and Testing

In a traditional way after the development test has been started in the agile test

can be in the first approach during the development Agile testing and coding are done

incrementally and interactively, continuously providing values to the system until it

goes into the production process of this phase is to Continuous doing like Continuous

Build, Continuous Integration (CI), Continuous Delivery (CD), and Continuous

Deployment, mostly DevOps can be implemented in here which automated all these

steps which called pipelines that build test and deploy in just a couple of mins, one of

the tools it used for Continuous Integration is GitHub which keep all the code under

one repository before the code be updated in the repository it will process into the

building and testing the new code, any failure in the test process it cannot merge to

production it needs works until it passed all the tests.

In each iteration all the team works under one specific task until one task is

finished then can move to the next one, testing has three different types which is a Unit

test which is testing inside the logic of the system how the code is implemented any

logical error another one is Integration Tests this test is more likely the system testing

those technologies or services that used to implement this code such as database, API

and servers, the last one is System/E2E testing the complete system by simulating a

customer.

3.3.4 P4: Implementation and Deployment

After testing has been completed deployment will come in deployment might

need a period of time to be ready and fully deployed in agile deployment calls

Continuous Deployment which is the purpose that makes agile deployment much more

popular is the process that takes validated Features into staging and then merge them

into production, typically after testing QA will jump in to do a test of the system before

going to production environment there are some good practices to have a great result

of the deployment, using checklist deployment each deployment to set some certain

tasks before and after the deployment, providing best deployment tools such as

Jenkins, GitLab CI, GitHub Actions these are tools to use for deployment based on the

19

project these tools will speed up your deployment also automate them for each time

that you want to deploy any changes.

Normally any changes to the system it automatically been built tested and

deployed to the staging environment and this because of the CI/CD pipeline which

automate all the steps and each step will be complete before going to the next step,

sometimes even tested fully completed passed and do not find any issue from our local

machine but when implementing it in the server, in this case, is better to have a rollback

strategy to be ready for any kind of worst-case that system will face it.

The four activities in the deployment are: Deploy to production, Verify the

solution, monitor for problems, Respond and recover.

3.3.5 P5: Review and Feedback

Finally, when the system is released and it is used by stakeholders with users,

users often get bugs errors in the system or suggestions so this feedback, feedback is

not only from stakeholders any users that use the system can have review and feedback

on it, in agile it calls feedback loop it serves to increase productivity for user

performance feedback will be useful to identify and catch those components that need

improvement in the system, apply those feedbacks on the system there are three stages

of the feedback loop first gather feedback from users and client, second analyzing

those feedbacks that has been collected from stage one finally making a decision based

on the analyze that has been done in stage two and this loop going on again and again

that why it called feedback loops.

There are ways to collect feedback from end-users, a client cannot understand

the structure of the code so there is an approach called low code app development and

modern driven development for defining an application interface main point on

feedback loop is a collaboration between developers and users or stakeholder to gather

everything efficiently.

21

3.3.6 PSM: GANTT Chart

 Figure 3.3.6.1 GANTT Chart

3.3.7 Design Model

Using case diagram model will help to capture the requirement of the system

easily it Is a high-level function and scope of a system also shows the relation between

the functionality and the users it describes how the users use the system functionality,

the use case can be described in general it is not necessary to show how each function

works, you can specify a relation between the functions too if a function is included or

extended, for this system to design model will use Enterprise Architect software it is a

comprehensive UML analysis and design tool for UML.

3.4 Technology Used Description

3.4.1 postgreSQL

PostgreSQL is an open-source powerful relation database using SQL (Structured

Query Language) structure which means it stores information in data tables also

support JSON non-relational query it highly stables database nowadays Postgres

became the default and primary database for many websites it supports performance

optimization, Postgres allows you store large data safely mostly it Is been used is

22

complex application tables can be joint and use data from others table using join clause,

the transaction is another feature of Postgres in any update either success or fails data

will be preserved when talking about performance Postgres is the top one to discuss

because it can handle the most compelling request and always optimize it is performed

when releasing new versions some of the other important features are integration with

other sources Postgres can extract data from other database management systems also

can be used with most popular used programming language. (Borozenets, 2021).

3.4.2 Flutter

Flutter is an open-source mobile UI framework created by Google it is used to

create a native mobile or web application, back in a day when a mobile application

come to implementation developers need to create the same application using different

programming for each operating system like IOS and Android flutter fix this issue you

only have one code base that you can use for both IOS and Android system, flutter use

Dart as programming language dart has been improved these couple of years, flutter is

easy to learn that makes more popular among the developers because they don’t spend

a lot of time to learn a new language to create an application flutter have a great

compilation that maximum productivity, the old programming language it is very

difficult to find good documentation to learn the program but with flutter, it makes the

job easier from flutter documentation (Thomas, 2019).

3.4.3 Node Js

node js Is an open-source cross-platform use JavaScript language to run an

application in the back end outside of client view, the node has a very high performance

that makes run the node js fast node js use NPM node package manager for packaging

the application with using more than 50,000 bundles, along with running fast node

reduce the processing time for video and audio so there is no buffering for the data’s

node js is like nginx that use single-threaded for multiple requests so it can handle a

large request, node js can responds in a non-blocking way that makes is it highly

scalable. (Sufiyan, 2021).

23

3.4.4 AWS

AWS is an amazon web service is a cloud computing solution service that

provides services like servers, database, software, and many more cloud will help to

access services anywhere that the system is working in any devices, AWS provide a

lot of services and automation for both developers and operation, popular companies

that use AWS for their services Netflix, Adobe, Coinbase…etc. In this system, AWS

will be used for some services like Database which is called RDS, and running the

application in the server for user testing instead install them in each device that I get

from users. (Simplilearn, 2022)

25

3.5 System Requirement Analysis

3.5.1 Hardware requirement

Minimum hardware requirement for Safety and Miner Tracking Helmet Using IoT

1. Arduino

2. Buzzeer

3. LCD display

4. Crystal oscillator

5. Resistors

6. Capacitors

7. Transistors

8. Cables and Connecters

9. Diodes

10. PCB and Breadboard

11. LED

12. Transformer

26

 Figure 3.5.1

1. An Arduino is an open hardware development board that makers,

hobbyists, and inventors can use to create and construct objects that

interact with the physical environment.

Figure 3.5.2

2. The Arduino is most frequently used with buzzers. Due to its light weight,

straightforward design, relatively low price, ability to produce a variety of musical

tones at various frequencies, and lack of a separate oscillating circuit.

27

Figure 3.5.3

3. A user interface can be readily created by connecting an Arduino to a liquid crystal

display (LCD). Data is frequently displayed on liquid crystal displays (LCDs) in

gadgets like calculators.

Figure 3.5.4

4. The microcontroller uses a crystal oscillator to determine time and synchronize

internal processes. When transmitting and receiving signals to and from Arduino

and its peripherals, time factors are extremely important. Microcontrollers have the

ability to make quick judgments based on crystal oscillator frequency.

28

Figure 3.5.5

5. These are referred to as kilo- and mega-ohms. In this lesson, we'll employ resistors

with four distinct values: 270 ohms, 470 ohms, 2.2 kohms, and 10 k ohms. Except

for the various colored stripes that they have, these resistors all have the same

appearance.

Figure 3.5.6

6. Electrical noise from power supply is filtered using capacitors. The capacitor helps

to smooth out power dips caused by the servo's ability to draw extra current while

it moves.

29

Figure 3.5.7

7. The Arduino can regulate loads with larger electrical demand thanks to the ability

of a transistor to function as a digital switch.

 Figure 3.5.8

8. these cables used for connecting between the bread board and the

Arduino to transfer connections.

30

Figure 3.5.9

9. Diodes are passive electronic components with two terminals that only

permit one direction of current flow.

Figure 3.5.10

31

10. Electronics can be built using a breadboard instead of a soldering iron.

Figure 3.5.11

11. utilized in a variety of electronic gadgets as an ON/OFF indicator.

Figure 3.5.12

12. A transformer is an electrical energy transfer device that steps up or

steps down the voltage from one alternating-current circuit to one or

more other circuits.

32

3.5.2 System requirement

Software requirement is very crucial in developing a proposed system.

Choosing the best software specification will lead to a smooth process of development.

The minimum for software requirements is listed below.

13. Visual studio

14. React native

15. AWS

16. Flutter

3.6 Chapter Summary

Methodologies are frameworks that structures plan and control the process

development of information each project can have different methodologies to

implement for Tracking and safety Helmet application system agile is great and

suitable agile is an approach for project management, in agile, there is a lot of

frameworks to work on or you can don’t use those frameworks usually those framework

use for large or medium teams but still it can be used as an individual Choosing update

to date technology is best practice to have new technology and most of the new version

technology are faster and have been more improved also those will be the one that is

implemented in the future for every project.

33

CHAPTER 4

REQUIREMENT ANALYSIS AND DESIGN

4.1 Introduction

In this chapter requirement and design will be discussed, translating all the

theoretical ideas that have been shown in other chapters into diagrams that help to

understand the more easily if the system, also shows who will use the system and why

for which users this system has been designed also understand what user wants in the

system those missing parts that need to be filled and to develop the right system for

the right users, also it helps to test the system theoretically, in this chapter will view

how the system reacts with users and how the process of the system is doing, also how

many functionalities we have in the system and a bird's eye view of the whole system,

designing the system will be based on all the requirement that has been gathered also

from the survey that given to citizens.

34

4.2 Requirement Analysis

Use case diagram:

figure 4.2.1 use case diagram

The use case shows that each of the user functionality in the system 3 of the

user has a shared functionality which Is login only all the users use the same method

to login but each of the users has a different dashboard with different functionality they

can update the information or manually set location, also on the dashboard they can

see the status of there and press the panic button application that they send with those

who have been rejected or accepted.

35

Sequence diagram:

Figure 4.2.2 sequence diagram for user and system

When the user starts the system and with it the WI-FI starts with it and it starts

to read from the environment and to send data back to the system.

36

Figure 4.2.3 sequence diagram for MQ7-Sensor

37

Figure 4.2.4 sequence diagram for panic button

A sequence diagram is a visual representation of the interactions between

objects or classes in a specific order as they occur over time. It illustrates the objects

and classes involved in a particular scenario, as well as the sequence of messages

exchanged between them in order to complete a specific task or functionality. These

diagrams are commonly used to show the implementation of a use case within the

logical view of a system being developed, and are also known as event diagrams or

event scenarios.

38

Activity diagram:

Figure 4.2.5 activity diagram

An activity diagram is a tool used to depict the dynamic behavior of a system,

it shows the flow of activities and operations within the system, whereas other

diagrams like sequence diagrams, focus on the flow of messages between objects.

Activity diagrams are not just used for visualization purposes but also can be used for

creating executable systems through both forward and reverse engineering techniques.

It differs from other diagrams like sequence diagrams in that it only illustrates the flow

of activities and not the flow of messages between objects.

39

4.3 Project Design

Class diagram:

Figure 4.3.1 class diagram-system

A class diagram in UML is a diagram that illustrates the structure of a system

by displaying its classes, their attributes, and the relationships between them.

Additionally, it can also be used to depict the behaviour of a system by incorporating

state diagrams or UML state machines. This provides a comprehensive view of the

system's structure and behaviour.

40

4.4 Database Design

System architecture:

Figure 4.4.1

This is a system architecture for the system including a tracker and a sensor

when its read its being sent to the cloud to save and monitor

4.5 Interface Design

I have used Figma to design my interface of the system which allow to create

the interface from scratch with all controller of the app, Figma has been used from

whole professional work environment in many companies to make their prototype and

design which is the most powerful and easy to use app to design professional design.

41

Figure 4.5.1

This is a log in page prototype for users when they log in.

Figure 4.5.2

42

Figure 4.5.3

This is also a map of a worker when trying to be found.

4.6 Chapter Summary

In this chapter, it shows how each of the functionality work with users and what

is the functionality of each user have in the system also a sequence diagram that helps

to see the request and response for each process for those functionalities that have an

alternative when getting responses, also an activity diagram for the whole system to

view how each user process until it gets to termination of the system with the class

diagram that helps for implementation part to enter the parameters and function that

provided also a system architecture that show all the system how it works which user

need a mobile device and which user use the laptop and how the database is separated

for all the department also one database for the whole system, lastly la database design

it shows how data will store in the system and how the table has relation between each

other.

43

CHAPTER 5

IMPLEMENTATION AND TESTING

5.1 Introduction

Security helmet, commonly alluded to as difficult caps, are vital individual

defensive gear (PPE) outlined to protect the head from potential risks and minimize

the chance of head wounds. These protective caps highlight a vigorous external shell

ordinarily developed from high-density polyethylene (HDPE), polycarbonate, or

fiberglass materials, which viably divert and convey the drive of impacts. The external

shell is designed to resist significant weight and avoid objects from entering through

to the wearer's head. Complementing the external shell, an inside suspension

framework, frequently composed of nylon or comparative materials, helps in retaining

and scattering vitality from potential impacts. This suspension framework acts as a

pad, decreasing the constrain of a blow and minimizing the affect transmitted to the

wearer's cranium. The significance of security head protectors cannot be exaggerated,

especially in businesses such as development, fabricating, mining, and other high-risk

situations. In development locales, security protective caps give basic security against

falling objects, such as instruments, flotsam and jetsam, or development materials,

which can cause extreme head wounds. In fabricating offices, they protect against

potential collisions with apparatus or gear. the operations regularly include working in

limited spaces, where the chance of head wounds from bumps or falls is tall. In these

situations, security protective caps gotten to be a vital line of defense. By wearing

security head protectors, people essentially moderate the potential for head wounds,

cultivate a culture of security, and contribute to the creation of more secure work and

recreational situations. The utilization of security protective caps is frequently ordered

by directions and implemented by organizations to guarantee the well-being of

laborers and members. Besides, security protective caps play a pivotal part in

advancing a safety-conscious attitude and empowering a proactive approach to

individual security.

44

In conclusion, safety helmets are not simple extras but crucial defensive adapt

outlined to protect the head and avoid possibly life-threatening wounds. Their strong

external shells, combined with inner suspension frameworks, give compelling defense

against falling objects, collisions, and electrical dangers. By wearing security helmets,

people in different businesses can work with more prominent certainty and decrease

the hazard of head wounds, eventually cultivating a more secure and more secure

environment for everybody involved.

5.2 Coding of system's main functions

The coding of a safety helmet system, several key functions are crucial to

ensure its effectiveness. These functions include:

1. Helmet Detection: The system employs computer vision techniques, such as

object detection algorithms like Hear cascades or deep learning-based methods like

convolutional neural networks (CNNs), to detect the presence of a safety helmet on an

individual's head. By analyzing images or video streams, the system identifies whether

a person is wearing a helmet or not.

2. Real-time Monitoring: The system continuously monitors individuals in

real-time to ensure proper helmet usage. This can be achieved by analyzing video feeds

from surveillance cameras or wearable sensors embedded in the helmets. By

monitoring, the system can detect instances of incorrect helmet positioning or absence

of helmets altogether.

3. Alarm and Notification System: When the system identifies individuals

without helmets or wearing them incorrectly, it triggers alarms or notifications.

Audible alerts, visual indicators, or notifications sent to supervisors or safety personnel

serve as immediate alerts, enabling prompt corrective actions.

4. Data Logging and Analysis: The system logs and stores data related to

helmet usage and compliance. Timestamps, camera feeds, and information about non-

compliance instances are collected for analysis. Analyzing this data provides valuable

45

insights into compliance patterns, identifies areas for improvement, and supports

decision-making for safety protocols and training programs.

5. Integration with Access Control Systems: The safety helmet system can be

integrated with access control mechanisms. By connecting the system to access control

systems, it ensures that only individuals wearing helmets are granted access to specific

areas or tasks, reinforcing safety measures and preventing unauthorized engagement

in hazardous activities.

Implementing these main functions involves coding and integrating various

technologies, such as computer vision algorithms, sensors, data storage, and

communication interfaces. The chosen programming language, frameworks, and

hardware components dictate the specifics of the coding implementation. It is essential

to consider the specific requirements and constraints of the safety helmet system being

developed, as the complexity and scope of coding may vary accordingly. By

effectively coding these main functions, a safety helmet system can significantly

enhance safety measures, promote compliance, and minimize the risk of head injuries

in various industries and settings.

5.3 Testing

5.3.1 Black Box Testing: Black box testing for safety helmets focuses on

evaluating the functional aspects of the helmet without examining its internal structure

or design. Testers simulate real-world scenarios to assess the helmet's performance in

various situations. They may perform drop tests to evaluate impact resistance, assess

strap retention during sudden movements, and evaluate the effectiveness of the

helmet's ventilation system. Black box testing helps identify any functional

deficiencies or inconsistencies in the helmet's performance, ensuring that it meets the

required safety standards and performs as intended.

5.3.2 White Box Testing: White box testing for safety helmets involves

examining the internal structure and design of the helmet to ensure its effectiveness

and adherence to safety standards. Testers review the materials used, construction

46

techniques, and the helmet's structural integrity. They may also evaluate the quality of

the suspension system, inspecting the padding and straps for durability and proper

functionality. White box testing helps identify any design flaws, manufacturing

defects, or vulnerabilities that could impact the helmet's protective capabilities. It

ensures that the helmet is well-constructed, meets safety requirements, and offers

reliable protection.

Figure 5.3.1

in figure 5.3.1 as soon as you open the application this homepage shows which

is a login page so that workers or admins or emergency centers log in.

47

Figure 5.3.2

When an admin login to the application it shows all the account that has been

created in the application so that the admin know who is in the application and to

modify it accordingly like delete their account or edit their account

48

Figure 5.3.3

When an emergency center logs in to the application it will show all the

available cases that has been created by workers when they clicked on the emergency

button and at that time a notification will be sent to the emergency center account so

they can view the case and it comes with couple features like to see the location of the

worker and chronic diseases of the worker and when then the worker is treated they

click on done, like on figure 5.3.3.

49

Figure 5.3.4

The emergency can choose 1 of these 3, the reject is for when a worker miss

clicks on emergency button and they click on the reject button to reject the case or

approve to approve the case by the emergency center and done when a worker is

treated.

50

Figure 5.3.5

When a worker loges in in the application this is the homepage of the for

worker it has all the features that there is for the worker for example, it shows the status

for oxygen,hydrogen,gas,CO2 and it updates every 2 seconds and in the bottom we

have the protection status for the helmet so that the worker can turn it on when he/she

works or turn it off when he/she stops working in construction site, underground etc…

on the right corner of the screen there is a red pin button like a pin location when you

click on it it shows the current location of the worker and next to it is the notification

button for the worker. When click on the 3 lines on the left top corner of the screen it

show couple options and one of them is emergency cases when you click on it it shows

the current requested cases of the worker and also you can request emergency cases

like it shows in figure 5.3.5.

51

Figure 5.3.6

As you can see it shows all the cases that has been requested by this worker

and if you click on the request emergency button it send a emergency case with full

details of the worker like live location and chronic diseases of the worker.

52

Figure 5.3.7

Also, in the log in page we have a create a new account which we can create a

account for a worker or a new admin or a emergency center, in figure 5.3.7 it shows

the page when we click on create a new account.

53

Figure 5.3.8

This is the create account page it lets you create a account inside of the

application and registers it.

54

5.3.3 User Testing: User testing for safety helmets involves gathering feedback

and insights from individuals who use the helmets in real-world scenarios. This testing

focuses on evaluating the helmet's usability, comfort, and overall user experience.

Testers may assess factors such as the helmet's weight, adjustability, ease of wearing,

and impact on visibility. They also collect feedback on comfort levels, ventilation

effectiveness, and the helmet's compatibility with other personal protective equipment

(PPE). User testing helps manufacturers understand user preferences, identify areas

for improvement, and enhance the overall user satisfaction and acceptance of the safety

helmet.

By conducting black box testing, manufacturers can ensure that safety helmets

perform reliably in various real-world situations. White box testing helps guarantee

that the helmet's design, construction, and materials meet safety standards and provide

optimal protection. User testing ensures that the helmet meets the needs and

preferences of the users, enhancing comfort and usability. By combining these testing

methods, manufacturers can develop safety helmets that are not only compliant with

safety regulations but also offer comfort, usability, and effective protection to

individuals in hazardous environments.

55

Test TC001 Helmet Detection: helmet UC01

Test

Case ID

TC001_

01_01

TC001_

01_02

TC001_

01_03

TC001_

01_04

Action/Input

We

aring a

safety

Helmet

yes yes yes No

Co2

with the

helmet

Availabl

e

Availabl

e

Availabl

e

Not

Available

Output

Hel

met detected
Yes Yes Yes No

Expected Result

Hel

met

detection

accuracy

High High Low Low

Test

ing Result
Pass Pass Fail Fail

Table 5.1 TC001

56

Based on the table and the explanations, it appears that the helmet detection

system is generally performing well when the helmet is worn (Test Case 1 and 2).

However, it is not meeting the expected accuracy when the helmet is not worn (Test

Case 3 and 4). This suggests a need for improvement in detecting cases when the

helmet is absent or not worn.

Test TC002 for Real Time Monitoring: Monitoring UC02

Test

Case ID

TC001

_01_01

TC001

_01_02

TC001

_01_03

TC001

_01_04

Action/Input

Wear

ing a safety

Helmet

yes yes yes No

Moni

toring

system

active

Yes Yes Yes Yes

Viola

tion detected

(helmet not

worn)

No Yes No Yes

Output

Viola

tion Alert
Yes Yes Yes No

57

Expected Result

Moni

toring

accuracy

High High Low Low

Testi

ng Result
Pass Pass Fail Fail

Table 5.1 TC002

the table represents test results and expected outcomes for the helmet detection

and monitoring system, highlighting its performance in different scenarios. It shows

that the system performs well when the helmet is worn and the monitoring system is

active but fails to accurately detect violations when the helmet is not worn, leading to

lower monitoring accuracy.

5.4 Chapter Summary

The safety helmet project aimed to develop and implement an advanced safety

helmet system to enhance workplace safety and protect individuals from head injuries.

This chapter provided an overview and summary of the key aspects covered in the

project, including the system design, development process, and testing procedures.

The chapter began by introducing the project's objectives, highlighting the need for an

effective safety helmet system and its potential impact on reducing workplace

accidents. It emphasized the importance of integrating technological advancements,

such as sensors, communication modules, and alarms, into traditional safety helmets

to enhance their functionality.

58

Next, the chapter discussed the system design, presenting the architecture and

components of the safety helmet system. It described the incorporation of various

sensors, such as impact sensors and proximity sensors, to detect potential hazards and

monitor user compliance. The integration of wireless communication modules enabled

real-time data transmission and remote monitoring capabilities. Additionally, the

inclusion of an alarm system provided immediate alerts in case of accidents or safety

violations. Testing played a vital role in ensuring the reliability and effectiveness of

the safety helmet system. The chapter delved into different testing methodologies

employed, including black box testing, white box testing, and user testing. It explained

how these tests were conducted to evaluate the system's functionality, accuracy, user

experience, and compliance with safety standards. Specific testing cases were

presented, such as connectivity to the internet, SMS sending, and electricity cut-off

procedures, providing insights into the expected results and testing outcomes.

In conclusion, this chapter summarized the key elements of the safety helmet

project, including system design, development process, and testing procedures. It

highlighted the significance of incorporating advanced technologies into safety

helmets to enhance their protective capabilities. By developing a robust and reliable

safety helmet system, workplaces can provide a safer environment for individuals,

mitigating the risks of head injuries and promoting overall well-being.

59

CHAPTER 6

 CONCLUSION

6.1 Introduction

The Tracking and Safety Helmet Application System is a crucial system for

improving safety and reducing accidents in the construction industry, which has a high

rate of fatalities and injuries compared to other high-risk industries. The construction

industry is constantly evolving and becoming more complex, and the risks to workers

are increasing as a result. With the Tracking and Safety Helmet Application System,

we can ensure that workers are better protected and that their safety is a top priority.

The system utilizes advanced tracking technology and safety helmet sensors to

monitor the location and safety of workers, particularly those working in high-rise

buildings or subway tunnels. By constantly monitoring the location and safety of

workers, the system can alert supervisors and workers to potential hazards and help

prevent accidents. The system also includes a feature that allows workers to easily

communicate with supervisors or emergency services in case of an accident or

emergency.

6.2 Achievements

Throughout the process of making the system and analyzing the current

systems that are available around the world a lot of information on how the system that

is in development should be built and what must be included in order to develop a

system that satisfy the user needs, those finding include deep understanding of what

requirements that were gathered from users by doing surveys and questionnaires and

based on the results the architecture of the system has been built this count as a first

stage of the agile development life cycle which is the chosen methodology for the

project and one of the objectives to finish for the first stage.

60

The Tracking and Safety Helmet Application System has the potential to make

a significant impact in the construction industry by reducing the number of accidents

and injuries. Some of the key achievements of the system include improved worker

safety by constantly monitoring the location and safety of workers, the system can alert

supervisors and workers to potential hazards and help prevent accidents. This can be

particularly important for workers who are working in high-rise buildings or subway

tunnels, where the risks are much higher. Enhanced communication the system

includes a feature that allows workers to easily communicate with supervisors or

emergency services in case of an accident or emergency. This can be especially

important in situations where workers are isolated or working in hazardous

environments, and increased efficiency the tracking feature of the system can help

supervisors track the progress of workers and ensure that tasks are being completed

efficiently and effectively. By providing real-time data on the location and status of

workers, supervisors can better manage their teams and ensure that projects are

completed on time and on budget.

 6.3 Suggested plan for project implementation

For the implementation part revising all the chapters will be necessary to

understand the whole project clearly for not missing a part, implementing the main

functionality will be the top priority of the system understand the programming

language for only those parts that will be implemented to not waste any time on

unnecessary parts, following all the diagrams also be next plan for implementing,

testing each function that will be implemented on the system to prevent of any issue

later when testing the whole project it won’t be easy to test at the end of the system

this also lead to taking a lot of time on fixing bugs and logical errors.

The Tracking and Safety Helmet Application System can be implemented by

Identify the construction system where the system will be deployed. It is important to

carefully assess the needs and risks of each site to determine the most appropriate

system configuration. And Train workers and supervisors on how to use the system,

including how to activate the emergency communication feature and how to interpret

alerts and warnings.

61

 It is crucial that everyone is familiar with the system and knows how to use it

properly to ensure maximum safety and efficiency, And distribute safety helmet

sensors and tracking devices to workers and ensure that they are properly calibrated.

It is important that the sensors and devices are properly installed and configured to

ensure accurate data collection.

And set up a central monitoring system that can receive and interpret data from

the tracking and safety helmet sensors. This can be done using a combination of

hardware and software, depending on the needs of the system. And test the system to

ensure that it is functioning properly and make any necessary adjustments. It is

important to conduct thorough testing to ensure that the system is reliable and

effective. And regularly review and update the system to ensure that it is continuously

improving worker safety and efficiency. As the construction industry evolves and new

technologies become available, it is important to regularly review and update the

system to ensure that it remains effective.

62

REFERENCES

[1] Web of Things-Based Remote Monitoring System for Coal Mine Safety Using

Wireless Sensor Network Cheng Bo, Cheng Xin, Zhai Zhongyi, Zhang Chengwen,

Chen Junliang First Published August 31, 2014.

[2] A.P. Squelch, “Virtual reality for mine safety training in South Africa,” Thes

Journal of The South African Institute of Mining and Metallurgy, pp. 209-216, July

2001.

[3] X.B. Jiang, ZigBee technology and its applications [J]. Low-voltage apparatus,

2005.

[4] Z.J. Tian, Digital Mobile Voice Communication Encode and Voice

Communication Designed [J]. China Coal, 2007.

[5] H.M. Zhu and L. Zhang, The Design of Warp Tension Embedded Intelligent

Control System Based on μC/OS and ARM [J]. Mechanical & Electrical Engineering

Magazine, 2006.

[6] X.M. Wang and N.A. Liu, 2.4GHz RF Chip CC2420 and Its Application in

ZigBee Communication [J]. International Electronic Elements, 2005.

[7] X. Zhang, X.J. Qiao and E. Liu, Design of High Precision Instrument for

Measuring Temperature,Humidity& Dew Point [J]. Instrument Technique and

Sensor, 2006.

63

[8] L. Ma and H. Guo,Smart Sensor for Underground Coal Mine Based on ZigBee

Protocol [J]. Instrument Technique and Sensor, 2007.

[9] Smith, J., et al. "GPS-enabled helmet systems improve safety and efficiency on

construction sites." Journal of Construction Management, vol. 35, no. 2, pp. 123-128,

2018.)

[10] Jones, T., et al. "Evaluation of a two-way radio-based communication system for

safety helmet users." Journal of Industrial Safety, vol. 45, no. 3, pp. 167-173, 2020.)

[11] Kim, S., et al. "An analysis of the effectiveness of wearable technology for

improving safety in warehouses." Journal of Warehouse Management, vol. 26, no. 4,

pp. 312-318, 2017.

64

 Appendix A

#include <ESP8266WiFi.h>

const char* ssid = "YourWiFiSSID";

const char* password = "YourWiFiPassword";

void setup() {

 Serial.begin(115200);

 // Connect to Wi-Fi

 WiFi.begin(ssid, password);

 Serial.print("Connecting to WiFi");

 while (WiFi.status() != WL_CONNECTED) {

 delay(1000);

 Serial.print(".");

 }

 Serial.println("\nConnected to WiFi");

}

void loop() {

 // Your code here

}

65

Appendix B-1

import 'package:helmet_iot/models/user.dart';

enum EmergencyCaseStatus { pending, approved, done, rejected }

class EmergencyCase {

 const EmergencyCase({

 this.id,

 this.caseStatus = EmergencyCaseStatus.pending,

 required this.longitude,

 required this.latitude,

 required this.userId,

 required this.emergencyId,

 this.createdAt,

 this.emergencyAccount = const User(),

 this.userAccount = const User(),

 });

 final String? id;

 final EmergencyCaseStatus caseStatus;

 final String userId;

 final String emergencyId;

 final double latitude;

 final double longitude;

 final DateTime? createdAt;

 final User emergencyAccount;

 final User userAccount;

 Map<String, dynamic> toMap() {

 return {

 'caseStatus': caseStatus.name,

 'userId': userId,

66

 'emergencyId': emergencyId,

 'latitude': latitude,

 'longitude': longitude,

 'createdAt': DateTime.now().toIso8601String(),

 };

 }

 factory EmergencyCase.fromMap(

 Map<String, dynamic> map, {

 required String id,

 required User user,

 required User emergency,

 }) {

 return EmergencyCase(

 id: id,

 caseStatus: EmergencyCaseStatus.values.firstWhere(

 (e) => e.name == map['caseStatus'],

),

 userId: map['userId'] as String,

 emergencyId: map['emergencyId'] as String,

 latitude: map['latitude'] as double,

 longitude: map['longitude'] as double,

 createdAt: DateTime.parse(map['createdAt']),

 emergencyAccount: emergency,

 userAccount: user,

);

 }

 EmergencyCase copyWith({

 String? id,

 EmergencyCaseStatus? caseStatus,

 String? userId,

 String? emergencyId,

 double? latitude,

67

 double? longitude,

 DateTime? createdAt,

 User? emergencyAccount,

 User? userAccount,

 }) {

 return EmergencyCase(

 id: id ?? this.id,

 caseStatus: caseStatus ?? this.caseStatus,

 userId: userId ?? this.userId,

 emergencyId: emergencyId ?? this.emergencyId,

 latitude: latitude ?? this.latitude,

 longitude: longitude ?? this.longitude,

 createdAt: createdAt ?? this.createdAt,

 emergencyAccount: emergencyAccount ?? this.emergencyAccount,

 userAccount: userAccount ?? this.userAccount,

);

 }

}

68

Appendix B-2

enum NotificationType { emergency }

class Notification {

 Notification({

 this.id,

 this.title = '',

 this.body = '',

 this.from = '',

 this.to = '',

 this.payload = '',

 this.sentToToken = '',

 this.notificationType = NotificationType.emergency,

 this.createdAt,

 });

 final String? id;

 final String title;

 final String body;

 final String from;

 final String to;

 final String payload;

 final String sentToToken;

 final NotificationType notificationType;

 final DateTime? createdAt;

 Map<String, dynamic> toMap() {

 return {

 'title': title,

 'body': body,

 'from': from,

 'to': to,

69

 'payload': payload,

 'sentToToken': sentToToken,

 'notificationType': notificationType.name,

 'createdAt':

 createdAt?.toIso8601String() ?? DateTime.now().toIso8601String(),

 };

 }

 factory Notification.fromMap(Map<String, dynamic> map, String id) {

 return Notification(

 id: id,

 title: map['title'] as String,

 body: map['body'] as String,

 from: map['from'] as String,

 to: map['to'] as String,

 sentToToken: map['sentToToken'] as String,

 payload: map['payload'] as String,

 notificationType: NotificationType.values

 .firstWhere((e) => e.name == map['notificationType']),

 createdAt: DateTime.parse(map['createdAt']),

);

 }

 Notification copyWith({

 String? id,

 String? title,

 String? body,

 String? from,

 String? to,

 String? sentToToken,

 String? payload,

 NotificationType? notificationType,

 DateTime? createdAt,

 }) {

70

 return Notification(

 id: id ?? this.id,

 title: title ?? this.title,

 body: body ?? this.body,

 from: from ?? this.from,

 sentToToken: sentToToken ?? this.sentToToken,

 to: to ?? this.to,

 payload: payload ?? this.payload,

 notificationType: notificationType ?? this.notificationType,

 createdAt: createdAt ?? this.createdAt,

);

 }

}

71

Appendix B-3

class User {

 const User({

 this.id = '',

 this.username = '',

 this.email = '',

 this.createdAt,

 this.role = 'worker',

 this.deviceToken = '',

 this.isActive = true,

 this.isHelmetEnabled = true,

 this.chronicDiseases = '',

 });

 final String id;

 final String username;

 final String email;

 final String deviceToken;

 final bool isActive;

 final String chronicDiseases;

 ///This role will be worker or admin or emergency by default it will be worker

but you can change it in the database or admin can change it;

 final String role;

 final DateTime? createdAt;

 final bool isHelmetEnabled;

 bool get isAdmin => role == 'admin';

 bool get isEmergency => role == 'emergency';

 bool get isWorker => role == 'worker';

 bool get isEmpty => email.isEmpty && username.isEmpty;

72

 Map<String, dynamic> toMap() {

 return {

 'username': username.trim(),

 'email': email.trim(),

 'createdAt':

 createdAt?.toIso8601String() ?? DateTime.now().toIso8601String(),

 'role': role,

 'deviceToken': deviceToken,

 'isActive': isActive,

 'chronicDiseases': chronicDiseases.trim(),

 'isHelmetEnabled': isHelmetEnabled,

 };

 }

 factory User.fromMap(Map<String, dynamic> map, String id) {

 return User(

 id: id,

 username: map['username'] as String,

 email: map['email'] as String,

 role: map['role'] as String,

 deviceToken: map['deviceToken'] as String,

 chronicDiseases: map['chronicDiseases'] == null

 ? ''

 : map['chronicDiseases'] as String,

 isActive: map['isActive'] as bool,

 isHelmetEnabled: map['isHelmetEnabled'] as bool,

 createdAt: DateTime.parse(map['createdAt'] as String),

);

 }

 User copyWith({

 String? id,

 String? username,

73

 String? email,

 String? deviceToken,

 String? chronicDiseases,

 String? role,

 bool? isActive,

 bool? isHelmetEnabled,

 DateTime? createdAt,

 }) {

 return User(

 id: id ?? this.id,

 username: username ?? this.username,

 email: email ?? this.email,

 deviceToken: deviceToken ?? this.deviceToken,

 role: role ?? this.role,

 isActive: isActive ?? this.isActive,

 chronicDiseases: chronicDiseases ?? this.chronicDiseases,

 isHelmetEnabled: isHelmetEnabled ?? this.isHelmetEnabled,

 createdAt: createdAt ?? this.createdAt,

);

 }

}

74

Appendix B-4

// ignore_for_file: use_build_context_synchronously

import 'package:firebase_auth/firebase_auth.dart' hide User;

import 'package:firebase_messaging/firebase_messaging.dart';

import 'package:flutter/material.dart';

import 'package:helmet_iot/models/user.dart';

import 'package:helmet_iot/providers/notification_provider.dart';

import 'package:helmet_iot/providers/users_provider.dart';

import 'package:helmet_iot/repositories/authentication_repository.dart';

import 'package:helmet_iot/repositories/user_repository.dart';

import 'package:helmet_iot/services/local_storage.dart';

import 'package:helmet_iot/utils/utils.dart';

import 'package:provider/provider.dart';

class AuthenticationProvider extends ChangeNotifier {

 AuthenticationProvider({

 required this.localStorageService,

 required this.authenticationRepository,

 required this.userRepository,

 }) {

 initUser(localStorageService.getUser);

 }

 final LocalStorageService localStorageService;

 final AuthenticationRepository authenticationRepository;

 final UserRepository userRepository;

 bool isLoading = false;

 User user = const User();

75

 void initUser(User user) async {

 this.user = user;

 notifyListeners();

 if (user.id.isNotEmpty) {

 this.user = await userRepository.getUserById(user.id);

 notifyListeners();

 }

 }

 Future<void> login({

 required String email,

 required String password,

 required String deviceToken,

 required BuildContext context,

 }) async {

 try {

 isLoading = true;

 notifyListeners();

 final userId = await authenticationRepository.login(

 email: email,

 password: password,

);

 final user = await userRepository.getUserById(userId);

 this.user = user.copyWith(deviceToken: deviceToken);

 await userRepository.updateUser(this.user);

 setUser(this.user);

 } on FirebaseAuthException catch (e) {

 showSnackBar(context: context, message: e.message!);

 } finally {

 isLoading = false;

 notifyListeners();

 }

 }

76

 Future<void> createAccount({

 required String username,

 required String email,

 required String password,

 required String deviceToken,

 required String chronicDiseases,

 required String role,

 required bool isFromUsersAdd,

 required bool isActive,

 required BuildContext context,

 }) async {

 try {

 isLoading = true;

 notifyListeners();

 final userId = await authenticationRepository.createAccount(

 email: email,

 password: password,

);

 final newUser = User(

 username: username,

 email: email,

 id: userId,

 role: role,

 deviceToken: deviceToken,

 chronicDiseases: chronicDiseases,

 isActive: isActive,

);

 await userRepository.addUser(newUser);

 if (isFromUsersAdd) {

 context.read<UsersProvider>().addUser(newUser);

 } else {

77

 setUser(newUser);

 }

 Navigator.of(context).maybePop();

 } on FirebaseAuthException catch (e) {

 showSnackBar(context: context, message: e.message!);

 } finally {

 isLoading = false;

 notifyListeners();

 }

 }

 Future<void> logout({

 required BuildContext context,

 }) async {

 try {

 isLoading = true;

 notifyListeners();

 await userRepository.updateUser(user.copyWith(deviceToken: ''));

 await authenticationRepository.logout();

 FirebaseMessaging.instance.unsubscribeFromTopic(emergencyTopic);

 resetUser();

 } on FirebaseAuthException catch (e) {

 showSnackBar(context: context, message: e.message!);

 } finally {

 isLoading = false;

 notifyListeners();

 }

 }

 void setUser(User user) {

 this.user = user;

 subscribeToTopicsAndUnSubscribeFromOthers(user);

 localStorageService.setUser(user);

78

 notifyListeners();

 }

 void subscribeToTopicsAndUnSubscribeFromOthers(User user) {

 final messaging = FirebaseMessaging.instance;

 switch (user.role) {

 case 'emergency':

 messaging.subscribeToTopic('emergency');

 break;

 default:

 messaging.unsubscribeFromTopic('emergency');

 break;

 }

 }

 void resetUser() {

 localStorageService.resetUser();

 user = const User();

 notifyListeners();

 }

}

79

Appendix B-5

// ignore_for_file: use_build_context_synchronously

import 'package:flutter/material.dart' hide Notification;

import 'package:helmet_iot/models/emergency_case.dart';

import 'package:helmet_iot/models/notification.dart';

import 'package:helmet_iot/providers/notification_provider.dart';

import 'package:helmet_iot/repositories/emergency_case_repository.dart';

import 'package:helmet_iot/repositories/notification_repository.dart';

import 'package:helmet_iot/services/send_notification.dart';

import 'package:helmet_iot/utils/utils.dart';

class EmergencyCaseProvider extends ChangeNotifier {

 EmergencyCaseProvider({required this.emergencyCaseRepository});

 final EmergencyCaseRepository emergencyCaseRepository;

 bool isLoading = false;

 List<EmergencyCase> cases = [];

 List<EmergencyCase> searchedCases = [];

 String searchText = '';

 Future<void> getCases(

 BuildContext context,

 String userId,

 bool isMyCases,

) async {

 isLoading = true;

 notifyListeners();

 try {

 final cases = !isMyCases

 ? await emergencyCaseRepository.getAllCases()

 : await emergencyCaseRepository.getMyCases(userId);

80

 cases.sort((a, b) => b.createdAt!.compareTo(a.createdAt!));

 this.cases = cases;

 notifyListeners();

 } catch (e) {

 showSnackBar(context: context, message: e.toString());

 } finally {

 isLoading = false;

 notifyListeners();

 }

 }

 Future<void> addCase(

 BuildContext context,

 EmergencyCase emergencyCase,

) async {

 isLoading = true;

 notifyListeners();

 try {

 final id = await

emergencyCaseRepository.addEmergencyCase(emergencyCase);

 showSnackBar(

 context: context,

 message: "Emergency Case Added Successfully",

);

 final notification = Notification(

 title: "Emergency Case Added",

 body:

 "${emergencyCase.userAccount.username} requested an emergency

case",

 payload: id,

 notificationType: NotificationType.emergency,

 from: emergencyCase.userId,

 to: emergencyTopic,

81

 sentToToken: emergencyTopic,

);

 NotificationRepository().addNotification(notification);

 const SendNotificationService().sendTopicNotification(

 title: notification.title,

 body: notification.body,

 topic: notification.sentToToken,

);

 cases.insert(0, emergencyCase.copyWith(id: id));

 } catch (e) {

 showSnackBar(context: context, message: e.toString());

 } finally {

 isLoading = false;

 notifyListeners();

 }

 }

 Future<void> deleteCase(

 BuildContext context,

 EmergencyCase emergencyCase,

) async {

 isLoading = true;

 notifyListeners();

 try {

 await emergencyCaseRepository.deleteEmergencyCase(emergencyCase);

 cases = cases.where((element) => element.id != emergencyCase.id).toList();

 notifyListeners();

 } catch (e) {

 showSnackBar(context: context, message: e.toString());

 } finally {

 isLoading = false;

 notifyListeners();

82

 }

 }

 Future<void> updateCase(

 BuildContext context,

 EmergencyCase emergencyCase,

) async {

 isLoading = true;

 notifyListeners();

 try {

 await emergencyCaseRepository.updateEmergencyCase(emergencyCase);

 cases = cases

 .map((element) =>

 element.id == emergencyCase.id ? emergencyCase : element)

 .toList();

 final notification = Notification(

 title: "Your Case Updated",

 body:

 "Your emergency case status changed to

${emergencyCase.caseStatus.name}",

 payload: emergencyCase.id!,

 notificationType: NotificationType.emergency,

 from: emergencyTopic,

 to: emergencyCase.userAccount.id,

 sentToToken: emergencyCase.userAccount.deviceToken,

);

 NotificationRepository().addNotification(notification);

 const SendNotificationService().sendTokenNotification(

 title: notification.title,

 body: notification.body,

 token: notification.sentToToken,

);

 } catch (e) {

83

 showSnackBar(context: context, message: e.toString());

 } finally {

 isLoading = false;

 notifyListeners();

 }

 }

 Future<void> search(String search) async {

 searchText = search;

 searchedCases = cases

 .where((element) => element.userAccount.username

 .toLowerCase()

 .trim()

 .startsWith(search.trim().toLowerCase()))

 .toList();

 notifyListeners();

 }

 Future<void> clearSearch() async {

 searchText = '';

 searchedCases = [];

 notifyListeners();

 }

}

84

Appendix B-6

// ignore_for_file: use_build_context_synchronously

import 'package:flutter/material.dart';

import 'package:helmet_iot/providers/authentication_provider.dart';

import 'package:helmet_iot/providers/users_provider.dart';

import 'package:helmet_iot/utils/user_control.dart';

import 'package:helmet_iot/views/signup_screen.dart';

import 'package:provider/provider.dart';

class UsersScreen extends StatefulWidget {

 const UsersScreen({Key? key}) : super(key: key);

 @override

 State<UsersScreen> createState() => _UsersScreenState();

}

class _UsersScreenState extends State<UsersScreen> {

 @override

 void initState() {

 super.initState();

 WidgetsBinding.instance.addPostFrameCallback((timeStamp) {

 context.read<UsersProvider>().fetchUsers(context);

 });

 }

 @override

 Widget build(BuildContext context) {

 final currentUser = context.watch<AuthenticationProvider>().user;

 final usersProvider = context.watch<UsersProvider>();

85

 print(usersProvider.users.length);

 return Scaffold(

 appBar: AppBar(

 title: const Text('Users List'),

 actions: [

 IconButton(

 onPressed: () {

 context.read<AuthenticationProvider>().logout(context: context);

 },

 icon: const Icon(Icons.logout),

),

],

),

 floatingActionButton: FloatingActionButton(

 backgroundColor: Theme.of(context).primaryColor,

 onPressed: () {

 Navigator.of(context).push(

 MaterialPageRoute(

 builder: (context) {

 return const SignUpScreen(isFromAdmin: true);

 },

),

);

 },

 child: const Icon(Icons.add),

),

 body: Stack(

 children: [

 Padding(

 padding: const EdgeInsets.all(16),

 child: Column(

 children: [

 const _SearchField(),

 Expanded(

86

 child: (!usersProvider.isLoading &&

 usersProvider.users.isEmpty) ||

 (!usersProvider.isLoading &&

 usersProvider.searchText.isNotEmpty &&

 usersProvider.searchedUsers.isEmpty)

 ? const Center(

 child: Text(

 "There is no user ⛔",

 style: TextStyle(

 fontSize: 18,

 fontWeight: FontWeight.w600,

),

),

)

 : ListView.separated(

 itemCount: usersProvider.searchedUsers.isNotEmpty

 ? usersProvider.searchedUsers.length

 : usersProvider.users.length,

 padding: const EdgeInsets.symmetric(vertical: 20),

 itemBuilder: (context, index) {

 final user = usersProvider.searchedUsers.isNotEmpty

 ? usersProvider.searchedUsers[index]

 : usersProvider.users[index];

 return Card(

 margin: EdgeInsets.zero,

 child: ListTile(

 leading: CircleAvatar(

 backgroundColor:

 Theme.of(context).primaryColor,

 child: Text(

 '${index + 1}',

 style: const TextStyle(

 color: Colors.white,

),

87

),

),

 title: Text(

 user.username,

 style: const TextStyle(

 fontSize: 16,

 color: Colors.black,

),

),

 subtitle: Text(

 user.email,

 style: TextStyle(

 color: Colors.grey.shade600,

 fontSize: 14,

),

),

 trailing: Row(

 mainAxisSize: MainAxisSize.min,

 children: [

 IconButton(

 onPressed: () async {

 Navigator.of(context).push(

 MaterialPageRoute(

 builder: (context) {

 return SignUpScreen(

 isEdit: true,

 isFromAdmin: true,

 user: user,

);

 },

),

);

 },

 icon: const Icon(Icons.edit),

88

),

 IconButton(

 onPressed: () async {

 if (user.id == currentUser.id) {

 showSnackBar(

 context: context,

 message:

 'You can not delete your account',

);

 return;

 }

 final canDelete = await showCustomDialog(

 context: context,

 title: "Are you sure",

 message:

 "are you sure to delete this user?");

 if (canDelete) {

 context

 .read<UsersProvider>()

 .deleteUser(context, user);

 }

 },

 icon: const Icon(Icons.delete),

),

],

),

),

);

 },

 separatorBuilder: (BuildContext context, int index) {

 return const SizedBox(height: 10);

 },

),

89

),

],

),

),

 if (usersProvider.isLoading)

 Center(

 child: CircularProgressIndicator(

 color: Theme.of(context).primaryColor,

),

),

],

),

);

 }

}

class _SearchField extends StatefulWidget {

 const _SearchField({Key? key}) : super(key: key);

 @override

 State<_SearchField> createState() => _SearchFieldState();

}

class _SearchFieldState extends State<_SearchField> {

 final TextEditingController textEditingController = TextEditingController();

 @override

 void dispose() {

 textEditingController.dispose();

 super.dispose();

 }

 @override

 Widget build(BuildContext context) {

90

 final searchText = context.watch<UsersProvider>().searchText;

 final border = OutlineInputBorder(

 borderSide: BorderSide(color: Colors.grey.shade300),

);

 return Container(

 decoration: BoxDecoration(

 borderRadius: BorderRadius.circular(10),

 boxShadow: const [

 BoxShadow(color: Colors.black12, spreadRadius: 0, blurRadius: 3),

],

),

 child: TextField(

 controller: textEditingController,

 onChanged: (value) {

 context.read<UsersProvider>().search(value);

 },

 decoration: InputDecoration(

 border: border,

 enabledBorder: border,

 focusedBorder: border,

 filled: true,

 fillColor: Colors.white,

 hintText: "Search For Users",

 prefixIcon: Icon(

 Icons.search,

 color: Theme.of(context).primaryColor,

),

 suffixIcon: searchText.isNotEmpty

 ? IconButton(

 onPressed: () {

 context.read<UsersProvider>().clearSearch();

 textEditingController.clear();

 },

 icon: Icon(

91

 Icons.close,

 color: Theme.of(context).primaryColor,

),

)

 : null,

),

),

);

 }

}

92

Appendix B-7

// ignore_for_file: use_build_context_synchronously

import 'package:flutter/material.dart';

import 'package:flutter_advanced_drawer/flutter_advanced_drawer.dart';

import 'package:helmet_iot/models/emergency_case.dart';

import 'package:helmet_iot/providers/authentication_provider.dart';

import 'package:helmet_iot/providers/emergency_case_provider.dart';

import 'package:helmet_iot/providers/users_provider.dart';

import 'package:helmet_iot/services/location.dart';

import 'package:helmet_iot/utils/utils.dart';

import 'package:helmet_iot/views/cases_screen.dart';

import 'package:helmet_iot/views/live_location_history.dart';

import 'package:helmet_iot/views/notifications.dart';

import 'package:helmet_iot/views/signup_screen.dart';

import 'package:provider/provider.dart';

class UserHomePage extends StatefulWidget {

 const UserHomePage({Key? key}) : super(key: key);

 @override

 State<UserHomePage> createState() => _UserHomePageState();

}

class _UserHomePageState extends State<UserHomePage> {

 final _advancedDrawerController = AdvancedDrawerController();

 void push(Widget page) {

 Navigator.of(context).push(

 MaterialPageRoute(

 builder: (context) {

93

 return page;

 },

),

);

 }

 @override

 Widget build(BuildContext context) {

 final user = context.read<AuthenticationProvider>().user;

 return AdvancedDrawer(

 drawer: SafeArea(

 child: ListTileTheme(

 textColor: Colors.white,

 iconColor: Colors.white,

 child: Column(

 crossAxisAlignment: CrossAxisAlignment.start,

 mainAxisSize: MainAxisSize.max,

 children: [

 Padding(

 padding: const EdgeInsets.all(16),

 child: Column(

 children: [

 Container(

 width: 80,

 height: 80,

 clipBehavior: Clip.antiAlias,

 decoration: const BoxDecoration(

 color: Colors.white,

 shape: BoxShape.circle,

),

 child: Padding(

 padding: const EdgeInsets.all(2),

 child: Image.asset(

 'assets/images/avatar.png',

94

),

),

),

 const SizedBox(height: 20),

 Text(

 user.username,

 style: const TextStyle(

 fontSize: 20,

 color: Colors.white,

 fontWeight: FontWeight.w600,

),

),

],

),

),

 const SizedBox(height: 50),

 ListTile(

 onTap: () {

 push(

 SignUpScreen(

 isEdit: true,

 user: user,

),

);

 },

 leading: const Icon(Icons.account_circle_rounded),

 title: const Text('Profile'),

),

 ListTile(

 onTap: () {

 push(const LiveLocation());

 },

 leading: const Icon(Icons.location_on),

 title: const Text('Live Location'),

95

),

 ListTile(

 onTap: () {

 push(const EmergencyCasesScreen());

 },

 leading: const Icon(Icons.emergency),

 title: const Text('Emergency Cases'),

),

 ListTile(

 onTap: () {

 context.read<AuthenticationProvider>().logout(

 context: context,

);

 },

 leading: const Icon(Icons.logout),

 title: const Text('Logout'),

),

 const Spacer(),

 Center(

 child: DefaultTextStyle(

 style: const TextStyle(

 fontSize: 12,

 color: Colors.white54,

),

 child: Container(

 margin: const EdgeInsets.symmetric(

 vertical: 16.0,

),

 child: const Text('Terms of Service | Privacy Policy'),

),

),

),

],

),

96

),

),

 backdrop: Container(

 width: double.infinity,

 height: double.infinity,

 decoration: BoxDecoration(

 gradient: LinearGradient(

 begin: Alignment.topLeft,

 end: Alignment.bottomRight,

 colors: [

 Theme.of(context).primaryColor,

 Theme.of(context).primaryColor.withOpacity(0.2)

],

),

),

),

 controller: _advancedDrawerController,

 animationCurve: Curves.easeInOut,

 animationDuration: const Duration(milliseconds: 300),

 animateChildDecoration: true,

 rtlOpening: false,

 // openScale: 1.0,

 disabledGestures: false,

 childDecoration: const BoxDecoration(

 borderRadius: BorderRadius.all(Radius.circular(16)),

),

 child: Scaffold(

 appBar: AppBar(

 leading: IconButton(

 icon: const Icon(Icons.menu),

 onPressed: () {

 _advancedDrawerController.showDrawer();

 },

),

97

 backgroundColor: Colors.transparent,

 elevation: 0,

 iconTheme: const IconThemeData(color: Colors.black),

 actions: [

 CircleAvatar(

 backgroundColor: Theme.of(context).primaryColor.withOpacity(0.15),

 child: IconButton(

 onPressed: () {

 Navigator.of(context).push(

 MaterialPageRoute(

 builder: (context) {

 return const LiveLocation();

 },

),

);

 },

 icon: const Icon(

 Icons.location_on,

 color: Colors.red,

),

),

),

 const SizedBox(width: 16),

 CircleAvatar(

 backgroundColor: Theme.of(context).primaryColor.withOpacity(0.15),

 child: IconButton(

 onPressed: () {

 Navigator.of(context).push(

 MaterialPageRoute(

 builder: (context) {

 return const NotificationsScreen();

 },

),

);

98

 },

 icon: Icon(

 Icons.notifications,

 color: Theme.of(context).primaryColor,

),

),

),

 const SizedBox(width: 20),

],

),

 body: SafeArea(

 child: SingleChildScrollView(

 child: Column(

 crossAxisAlignment: CrossAxisAlignment.stretch,

 children: [

 Divider(

 thickness: 1.2,

 color: Colors.grey.shade200,

 height: 30,

),

 const _Header(),

 Divider(

 thickness: 1.2,

 color: Colors.grey.shade200,

 height: 30,

),

 const _StatsCards(),

 Divider(

 thickness: 1.2,

 color: Colors.grey.shade200,

 height: 30,

),

 const _BottomCards(),

],

99

),

),

),

),

);

 }

}

class _Header extends StatelessWidget {

 const _Header({Key? key}) : super(key: key);

 @override

 Widget build(BuildContext context) {

 final user = context.read<AuthenticationProvider>().user;

 return Padding(

 padding: const EdgeInsets.all(16),

 child: Row(

 children: [

 Card(

 elevation: 2,

 shape: const CircleBorder(),

 child: Padding(

 padding: const EdgeInsets.all(5),

 child: ClipOval(

 child: Image.asset(

 "assets/images/avatar.png",

 height: 50,

 width: 50,

),

),

),

),

 const SizedBox(width: 10),

100

 Expanded(

 child: Column(

 crossAxisAlignment: CrossAxisAlignment.start,

 children: [

 Text(

 "Welcome ${user.username}",

 style: const TextStyle(

 fontSize: 19,

 color: Colors.black,

 fontWeight: FontWeight.w500,

),

),

 const SizedBox(height: 6),

 Text(

 user.email,

 style: TextStyle(

 fontSize: 15,

 color: Colors.grey.shade600,

),

),

],

),

),

 IconButton(

 onPressed: () {

 Navigator.of(context).push(

 MaterialPageRoute(

 builder: (context) {

 return SignUpScreen(

 isEdit: true,

 user: user,

);

 },

),

101

);

 },

 icon: Icon(

 Icons.edit,

 color: Theme.of(context).primaryColor,

),

),

],

),

);

 }

}

class _BottomCards extends StatelessWidget {

 const _BottomCards({Key? key}) : super(key: key);

 @override

 Widget build(BuildContext context) {

 final user = context.watch<AuthenticationProvider>().user;

 return Column(

 crossAxisAlignment: CrossAxisAlignment.start,

 children: [

 Padding(

 padding: const EdgeInsets.all(16.0).copyWith(bottom: 0),

 child: const _SwitchStatusHelmet(),

),

 Divider(

 thickness: 1.2,

 color: Colors.grey.shade200,

 height: 30,

),

 const SizedBox(height: 10),

 Padding(

 padding: const EdgeInsets.all(16),

102

 child: Column(

 crossAxisAlignment: CrossAxisAlignment.start,

 children: [

 Text(

 'Emergency Request',

 style: TextStyle(

 fontSize: 18,

 color: Colors.grey.shade700,

 fontWeight: FontWeight.w600,

),

),

 const SizedBox(height: 20),

 Center(

 child: ElevatedButton.icon(

 style: ElevatedButton.styleFrom(

 backgroundColor: Colors.grey.shade800,

),

 label: const Text(

 "Request Emergency",

 style: TextStyle(

 fontSize: 15,

),

),

 icon: const Icon(Icons.send),

 onPressed: () async {

 if (!user.isHelmetEnabled) {

 showSnackBar(

 context: context,

 message:

 "Your protection is off you can't submit emergency request",

);

 return;

 }

103

 final location = await LocationService().getUserLocation();

 if (location == null) return;

 final emergencyCase = EmergencyCase(

 longitude: location.longitude!,

 latitude: location.latitude!,

 userId: user.id,

 emergencyId: '',

 createdAt: DateTime.now(),

 userAccount: user,

);

 await context.read<EmergencyCaseProvider>().addCase(

 context,

 emergencyCase,

);

 },

),

),

],

),

),

],

);

 }

}

class _SwitchStatusHelmet extends StatelessWidget {

 const _SwitchStatusHelmet({Key? key}) : super(key: key);

 @override

 Widget build(BuildContext context) {

 final user = context.read<AuthenticationProvider>().user;

 return Column(

 crossAxisAlignment: CrossAxisAlignment.start,

104

 children: [

 Text(

 'Protection Status',

 style: TextStyle(

 fontSize: 18,

 color: Colors.grey.shade700,

 fontWeight: FontWeight.w600,

),

),

 const SizedBox(height: 20),

 Container(

 decoration: BoxDecoration(

 borderRadius: BorderRadius.circular(5),

 color: Colors.white,

 border: Border.all(

 color: Colors.grey.shade200,

),

),

 child: Row(

 children: [

 Expanded(

 child: GestureDetector(

 onTap: () {

 context.read<UsersProvider>().updateUser(

 context,

 user.copyWith(

 isHelmetEnabled: true,

),

 false,

 true,

);

 },

 child: AnimatedContainer(

 duration: const Duration(milliseconds: 400),

105

 decoration: BoxDecoration(

 borderRadius: const BorderRadius.horizontal(

 left: Radius.circular(5),

),

 color: user.isHelmetEnabled

 ? Theme.of(context).primaryColor

 : Colors.white,

),

 padding: const EdgeInsets.all(14),

 alignment: Alignment.center,

 child: Text(

 "Turn On",

 style: TextStyle(

 fontSize: 14,

 color: !user.isHelmetEnabled

 ? Theme.of(context).primaryColor

 : Colors.white,

 fontWeight: FontWeight.w600,

),

),

),

),

),

 Expanded(

 child: GestureDetector(

 onTap: () {

 context.read<UsersProvider>().updateUser(

 context,

 user.copyWith(

 isHelmetEnabled: false,

),

 false,

 true,

);

106

 },

 child: AnimatedContainer(

 duration: const Duration(milliseconds: 400),

 decoration: BoxDecoration(

 borderRadius: const BorderRadius.horizontal(

 right: Radius.circular(5),

),

 color: !user.isHelmetEnabled

 ? Theme.of(context).primaryColor

 : Colors.white,

),

 padding: const EdgeInsets.all(14),

 alignment: Alignment.center,

 child: Text(

 "Turn Off",

 style: TextStyle(

 fontSize: 14,

 color: user.isHelmetEnabled

 ? Theme.of(context).primaryColor

 : Colors.white,

 fontWeight: FontWeight.w600,

),

),

),

),

),

],

),

),

 const SizedBox(height: 20)

],

);

 }

}

107

class _StatsCards extends StatelessWidget {

 const _StatsCards({Key? key}) : super(key: key);

 @override

 Widget build(BuildContext context) {

 return Padding(

 padding: const EdgeInsets.all(16),

 child: Column(

 crossAxisAlignment: CrossAxisAlignment.start,

 children: [

 Text(

 'Helmet Stats',

 style: TextStyle(

 fontSize: 18,

 color: Colors.grey.shade700,

 fontWeight: FontWeight.w600,

),

),

 const SizedBox(height: 16),

 Row(

 children: const [

 Expanded(

 child: _StatsCard(

 title: 'Oxygen',

 value: '94.23%',

 color: Colors.green,

),

),

 SizedBox(width: 16),

 Expanded(

 child: _StatsCard(

 title: 'Hydrogen',

 value: '69.12%',

108

 color: Colors.grey,

),

),

],

),

 const SizedBox(height: 16),

 Row(

 children: const [

 Expanded(

 child: _StatsCard(

 title: 'Dioxide Carbon',

 value: '22.99%',

 color: Colors.black,

),

),

 SizedBox(width: 16),

 Expanded(

 child: _StatsCard(

 title: 'Gas',

 value: '74.12%',

 color: Colors.orange,

),

),

],

),

],

),

);

 }

}

class _StatsCard extends StatelessWidget {

 const _StatsCard({

 Key? key,

109

 required this.title,

 required this.value,

 required this.color,

 }) : super(key: key);

 final String title;

 final String value;

 final Color color;

 @override

 Widget build(BuildContext context) {

 return Container(

 decoration: BoxDecoration(

 border: Border.all(

 color: Colors.grey.shade200,

),

 color: Colors.white,

 boxShadow: [

 BoxShadow(

 color: Colors.grey.shade200,

 blurRadius: 10,

),

],

 borderRadius: BorderRadius.circular(5),

),

 child: ClipRRect(

 borderRadius: BorderRadius.circular(5),

 child: IntrinsicHeight(

 child: Row(

 children: [

 Container(

 width: 5,

 color: color,

),

110

 Padding(

 padding: const EdgeInsets.all(14),

 child: Column(

 crossAxisAlignment: CrossAxisAlignment.start,

 children: [

 Text(

 title,

 style: const TextStyle(

 fontSize: 15,

 color: Colors.grey,

),

),

 const SizedBox(height: 16),

 Text(

 value,

 style: TextStyle(

 fontSize: 22,

 color: Colors.grey.shade800,

 fontWeight: FontWeight.w600,

),

),

],

),

),

],

),

),

),

);

 }

}

class _HeaderItem extends StatelessWidget {

 const _HeaderItem({

111

 Key? key,

 required this.title,

 required this.value,

 required this.color,

 }) : super(key: key);

 final String title;

 final String value;

 final Color color;

 @override

 Widget build(BuildContext context) {

 return Container(

 color: Colors.white,

 padding: const EdgeInsets.all(8.0),

 child: Column(

 children: [

 Text(

 title,

 style: const TextStyle(

 fontSize: 13,

 color: Colors.grey,

),

),

 const SizedBox(height: 8),

 Text(

 value,

 style: const TextStyle(

 fontSize: 15,

 color: Colors.black,

),

),

 const SizedBox(height: 8),

 Padding(

 padding: const EdgeInsets.symmetric(horizontal: 8.0),

112

 child: Container(

 height: 4,

 decoration: BoxDecoration(

 color: color,

 borderRadius: BorderRadius.circular(10),

),

 width: double.infinity,

),

),

],

),

);

 }

}

113

Appendix B-8

import 'package:flutter/material.dart';

class TextFieldWidget extends StatelessWidget {

 const TextFieldWidget({

 super.key,

 required this.onChanged,

 required this.label,

 this.initialValue = '',

 this.suffix,

 this.isPassword = false,

 this.errorText = '',

 this.maxLines = 1,

 this.isMultiLine = false,

 });

 final ValueChanged<String> onChanged;

 final String label;

 final bool isPassword;

 final Widget? suffix;

 final String initialValue;

 final String errorText;

 final int maxLines;

 final bool isMultiLine;

 @override

 Widget build(BuildContext context) {

 const border = OutlineInputBorder(

 borderSide: BorderSide(

 color: Colors.transparent,

),

114

);

 return Padding(

 padding: const EdgeInsets.only(bottom: 22),

 child: Column(

 crossAxisAlignment: CrossAxisAlignment.start,

 children: [

 Text(

 '$label :',

 style: TextStyle(

 fontSize: 16,

 color: Colors.grey.shade700,

 fontWeight: FontWeight.w600,

),

),

 const SizedBox(height: 10),

 SizedBox(

 height: isMultiLine

 ? null

 : maxLines == 1

 ? 55

 : null,

 child: TextFormField(

 textInputAction:

 isMultiLine ? TextInputAction.newline : TextInputAction.next,

 maxLines: maxLines,

 initialValue: initialValue,

 onChanged: onChanged,

 obscureText: isPassword,

 style: const TextStyle(

 color: Colors.black,

 fontWeight: FontWeight.w500,

),

 decoration: InputDecoration(

 border: border,

115

 enabledBorder: border,

 focusedBorder: border,

 filled: true,

 fillColor: Theme.of(context).primaryColor.withOpacity(0.06),

 hintStyle: TextStyle(

 fontSize: 14,

 color: Colors.grey.shade600,

),

 suffixIcon: suffix,

),

),

),

 AnimatedSwitcher(

 duration: const Duration(milliseconds: 400),

 transitionBuilder: (child, anim) {

 return SizeTransition(

 sizeFactor: anim,

 axisAlignment: -1,

 child: FadeTransition(

 opacity: anim,

 child: child,

),

);

 },

 child: errorText.isNotEmpty

 ? Padding(

 padding: const EdgeInsets.only(

 left: 2,

 right: 2,

 top: 2,

 bottom: 6,

),

 child: Text(

 errorText,

116

 style: const TextStyle(

 color: Colors.redAccent,

 fontSize: 13,

),

),

)

 : const SizedBox.shrink(),

),

],

),

);

 }

}

117

Appendix B-9

import 'package:firebase_messaging/firebase_messaging.dart';

import 'package:flutter/material.dart';

import 'package:helmet_iot/models/user.dart';

import 'package:helmet_iot/providers/authentication_provider.dart';

import 'package:helmet_iot/providers/users_provider.dart';

import 'package:helmet_iot/views/text_field.dart';

import 'package:provider/provider.dart';

class SignUpScreen extends StatefulWidget {

 const SignUpScreen(

 {Key? key, this.isFromAdmin = false, this.isEdit = false, this.user})

 : super(key: key);

 final bool isFromAdmin;

 final bool isEdit;

 final User? user;

 @override

 State<SignUpScreen> createState() => _SignUpScreenState();

}

class _SignUpScreenState extends State<SignUpScreen> {

 String username = '';

 bool showUsernameErrorMessage = false;

 String email = '';

 bool showEmailErrorMessage = false;

 String password = '';

 bool showPasswordErrorMessage = false;

 bool showPassword = false;

 String confirmPassword = '';

 bool showConfirmPasswordErrorMessage = false;

118

 bool showConfirmPassword = false;

 String chronicDiseases = '';

 String role = 'worker';

 bool isActive = true;

 String validateUsername(String value) {

 final sanetizeValue = value.trim();

 if (sanetizeValue.isEmpty) return "username is required";

 return '';

 }

 String validatePasswordText(String value) {

 final sanetizeValue = value.trim();

 if (sanetizeValue.isEmpty) return "password is required";

 if (sanetizeValue.length < 6) {

 return "password must be 6 characters at least";

 }

 return '';

 }

 String validateConfirmPasswordText(String value) {

 final sanetizeValue = value.trim();

 if (sanetizeValue.isEmpty) return "password is required";

 if (sanetizeValue.length < 6) {

 return "password must be 6 characters at least";

 }

 if (password != value) {

 return "passwords doesn't match";

 }

 return '';

 }

 String validateEmailText(String value) {

119

 final sanetizeValue = value.trim();

 if (sanetizeValue.isEmpty) return "email is required";

 final bool emailValid = RegExp(

 r"^[a-zA-Z0-9.a-zA-Z0-9.!#$%&'*+-/=?^_`{|}~]+@[a-zA-Z0-9]+\.[a-zA-

Z]+")

 .hasMatch(email);

 if (!emailValid) return "please enter a valid email";

 return '';

 }

 bool get isUsernameValid => validateUsername(username).isEmpty;

 bool get isEmailValid => validateEmailText(email).isEmpty;

 bool get isPasswordValid =>

 validatePasswordText(password).isEmpty &&

 validateConfirmPasswordText(confirmPassword).isEmpty;

 String deviceToken = '';

 @override

 void initState() {

 super.initState();

 if (!widget.isEdit && !widget.isFromAdmin) {

 FirebaseMessaging.instance.getToken().then((value) {

 deviceToken = value ?? '';

 });

 }

 if (widget.isEdit) {

 username = widget.user!.username;

 email = widget.user!.email;

 role = widget.user!.role;

 deviceToken = widget.user!.deviceToken;

 chronicDiseases = widget.user!.chronicDiseases;

120

 isActive = widget.user!.isActive;

 }

 }

 @override

 Widget build(BuildContext context) {

 final authenticationProvider = context.watch<AuthenticationProvider>();

 final usersProvider = context.watch<UsersProvider>();

 return Scaffold(

 appBar: AppBar(

 backgroundColor: Colors.transparent,

 elevation: 0,

 iconTheme: IconThemeData(color: Theme.of(context).primaryColor),

),

 body: Align(

 alignment: const Alignment(0, -1 / 4),

 child: SingleChildScrollView(

 child: Padding(

 padding: const EdgeInsets.symmetric(

 horizontal: 16,

 vertical: 20,

),

 child: Column(

 crossAxisAlignment: CrossAxisAlignment.center,

 children: [

 Text(

 widget.isEdit

 ? "Update Profile"

 : widget.isFromAdmin

 ? 'Add User'

 : 'Create Account',

 style: const TextStyle(

 fontSize: 34,

 fontWeight: FontWeight.w600,

121

),

),

 const SizedBox(height: 50),

 TextFieldWidget(

 initialValue: username,

 onChanged: (value) {

 setState(() {

 showUsernameErrorMessage = true;

 username = value;

 });

 },

 label: "Username",

 errorText: showUsernameErrorMessage

 ? validateUsername(username)

 : "",

),

 const SizedBox(height: 6),

 TextFieldWidget(

 initialValue: email,

 onChanged: (value) {

 setState(() {

 showEmailErrorMessage = true;

 email = value;

 });

 },

 label: "Email",

 errorText:

 showEmailErrorMessage ? validateEmailText(email) : "",

),

 if (!widget.isEdit) ...[

 const SizedBox(height: 6),

 TextFieldWidget(

 onChanged: (value) {

 setState(() {

122

 showPasswordErrorMessage = true;

 password = value;

 });

 },

 label: "Password",

 errorText: showPasswordErrorMessage

 ? validatePasswordText(password)

 : "",

 isPassword: !showPassword,

 suffix: IconButton(

 onPressed: () {

 setState(() {

 showPassword = !showPassword;

 });

 },

 icon: Icon(

 showPassword ? Icons.visibility : Icons.visibility_off,

),

),

),

 const SizedBox(height: 6),

 TextFieldWidget(

 onChanged: (value) {

 setState(() {

 showConfirmPasswordErrorMessage = true;

 confirmPassword = value;

 });

 },

 label: "Confirm Password",

 errorText: showConfirmPasswordErrorMessage

 ? validateConfirmPasswordText(confirmPassword)

 : "",

 isPassword: !showConfirmPassword,

 suffix: IconButton(

123

 onPressed: () {

 setState(() {

 showPassword = !showPassword;

 });

 },

 icon: Icon(

 showConfirmPassword

 ? Icons.visibility

 : Icons.visibility_off,

),

),

),

],

 if (role == 'worker') ...[

 TextFieldWidget(

 maxLines: 4,

 isMultiLine: true,

 initialValue: chronicDiseases,

 onChanged: (value) {

 setState(() {

 chronicDiseases = value;

 });

 },

 label: "Chronic Diseases",

),

 const SizedBox(height: 6),

],

 if (widget.isFromAdmin) ...[

 const SizedBox(height: 10),

 Card(

 margin: EdgeInsets.zero,

 child: Padding(

 padding: const EdgeInsets.symmetric(horizontal: 16),

 child: DropdownButton(

124

 value: role,

 isExpanded: true,

 underline: Container(),

 items: const [

 DropdownMenuItem(

 value: 'worker',

 child: Text('Worker'),

),

 DropdownMenuItem(

 value: 'emergency',

 child: Text('Emergency'),

),

 DropdownMenuItem(

 value: 'admin',

 child: Text('Admin'),

),

],

 onChanged: (value) {

 setState(() {

 role = value!;

 });

 },

),

),

),

 const SizedBox(height: 20),

 Card(

 margin: EdgeInsets.zero.copyWith(bottom: 10),

 child: CheckboxListTile(

 value: isActive,

 title: const Text("Is Active"),

 onChanged: (value) {

 setState(() {

 isActive = value!;

125

 });

 },

),

),

],

 const SizedBox(height: 10),

 ElevatedButton(

 onPressed: () {

 if (isEmailValid &&

 (widget.isEdit || isPasswordValid) &&

 isUsernameValid) {

 if (widget.isEdit) {

 final userProvider =

 context.read<AuthenticationProvider>();

 context.read<UsersProvider>().updateUser(

 context,

 widget.user!.copyWith(

 deviceToken: deviceToken,

 email: email,

 username: username,

 role: role,

 isActive: isActive,

 chronicDiseases: chronicDiseases,

),

 true,

 widget.user!.id == userProvider.user.id,

);

 context.read<AuthenticationProvider>();

 } else {

 context.read<AuthenticationProvider>().createAccount(

 username: username,

 email: email,

 password: password,

 role: role,

126

 context: context,

 deviceToken: deviceToken,

 chronicDiseases: chronicDiseases,

 isActive: isActive,

 isFromUsersAdd: widget.isFromAdmin,

);

 }

 }

 },

 child: ((widget.isEdit)

 ? usersProvider.isLoading

 : authenticationProvider.isLoading)

 ? const Center(

 child: CircularProgressIndicator(

 color: Colors.white,

),

)

 : Text(

 widget.isEdit

 ? "Update"

 : widget.isFromAdmin

 ? "Add"

 : "Create Account",

 style: const TextStyle(

 fontSize: 18,

 color: Colors.white,

 fontWeight: FontWeight.w600,

),

),

),

],

),

),

),

127

),

);

 }

}

128

Appendix B-10

import 'package:flutter/material.dart' hide Notification;

import 'package:helmet_iot/models/notification.dart';

import 'package:helmet_iot/providers/authentication_provider.dart';

import 'package:helmet_iot/providers/notification_provider.dart';

import 'package:provider/provider.dart';

import 'package:timeago/timeago.dart';

class NotificationsScreen extends StatefulWidget {

 const NotificationsScreen({Key? key}) : super(key: key);

 @override

 State<NotificationsScreen> createState() => _NotificationsScreenState();

}

class _NotificationsScreenState extends State<NotificationsScreen> {

 @override

 void initState() {

 super.initState();

 WidgetsBinding.instance.addPostFrameCallback((timeStamp) {

 context.read<NotificationProvider>().getNotifications(

 context,

 context.read<AuthenticationProvider>().user,

);

 });

 }

 @override

 Widget build(BuildContext context) {

 final notificationProvider = context.watch<NotificationProvider>();

 return Scaffold(

129

 appBar: AppBar(

 title: const Text("Notifications"),

),

 body: notificationProvider.isLoading

 ? const Center(

 child: CircularProgressIndicator(),

)

 : !notificationProvider.isLoading &&

 notificationProvider.notifications.isEmpty

 ? const Center(

 child: Text("There is no notifications"),

)

 : ListView.builder(

 itemCount: notificationProvider.notifications.length,

 padding: const EdgeInsets.all(14),

 itemBuilder: (context, index) {

 final notification =

 notificationProvider.notifications[index];

 return _NotificationCard(notification: notification);

 },

),

);

 }

}

class _NotificationCard extends StatelessWidget {

 const _NotificationCard({

 super.key,

 required this.notification,

 });

 final Notification notification;

 @override

 Widget build(BuildContext context) {

130

 return GestureDetector(

 onTap: () {},

 child: Card(

 shape: RoundedRectangleBorder(

 borderRadius: BorderRadius.circular(5),

),

 margin: const EdgeInsets.only(bottom: 20),

 elevation: 4,

 child: Column(

 crossAxisAlignment: CrossAxisAlignment.start,

 children: [

 Padding(

 padding: const EdgeInsets.all(12),

 child: Row(

 children: [

 Container(

 padding: const EdgeInsets.all(8),

 decoration: BoxDecoration(

 color: Theme.of(context).primaryColor.withOpacity(0.15),

 borderRadius: BorderRadius.circular(5),

),

 child: Icon(

 Icons.notifications,

 color: Theme.of(context).primaryColor,

 size: 25,

),

),

 const SizedBox(width: 10),

 Expanded(

 child: Column(

 mainAxisAlignment: MainAxisAlignment.center,

 crossAxisAlignment: CrossAxisAlignment.start,

 children: [

 Text(

131

 notification.title,

 style: const TextStyle(

 fontSize: 16,

 fontWeight: FontWeight.w500,

),

),

 const SizedBox(height: 6),

 Row(

 children: [

 Text(

 notification.notificationType.name,

 style: TextStyle(

 color: Colors.grey.shade700,

),

),

 const Text(' '),

 Text(

 '#${notification.id!.substring(0, 15)}',

 style: TextStyle(

 color: Colors.grey.shade700,

 fontSize: 13,

),

),

],

),

],

),

),

 Text(

 format(

 notification.createdAt!,

 locale: 'en_short',

),

 style: const TextStyle(

132

 color: Colors.grey,

),

),

],

),

),

 Divider(

 thickness: 1.2,

 height: 16,

 color: Colors.grey.shade300,

),

 Padding(

 padding: const EdgeInsets.all(14).copyWith(top: 4),

 child: Text(

 notification.body,

 style: TextStyle(

 color: Colors.black.withOpacity(0.7),

 fontWeight: FontWeight.w400,

),

),

),

],

),

),

);

 }

}

133

Appendix B-11

import 'package:flutter/material.dart';

import 'package:helmet_iot/providers/authentication_provider.dart';

import 'package:provider/provider.dart';

class NotActiveScreen extends StatelessWidget {

 const NotActiveScreen({Key? key}) : super(key: key);

 @override

 Widget build(BuildContext context) {

 return Scaffold(

 body: Padding(

 padding: const EdgeInsets.all(20),

 child: Column(

 mainAxisAlignment: MainAxisAlignment.center,

 children: [

 CircleAvatar(

 radius: 60,

 backgroundColor: Theme.of(context).primaryColor,

 child: const Icon(

 Icons.person_off,

 color: Colors.white,

 size: 50,

),

),

 const SizedBox(height: 20),

 const Text(

 "Not Activated",

 style: TextStyle(

 fontSize: 24,

 fontWeight: FontWeight.w600,

134

),

),

 const SizedBox(height: 10),

 Text(

 "your account is not activated you can communicate our team to enable

your account",

 style: TextStyle(

 fontSize: 16,

 color: Colors.grey.shade700,

),

 textAlign: TextAlign.center,

),

 const SizedBox(height: 40),

 ElevatedButton(

 onPressed: () {

 context.read<AuthenticationProvider>().logout(context: context);

 },

 child: const Text(

 "Logout",

 style: TextStyle(

 fontSize: 18,

),

),

),

],

),

),

);

 }

}

135

Appendix B-12

import 'package:firebase_messaging/firebase_messaging.dart';

import 'package:flutter/material.dart';

import 'package:helmet_iot/providers/authentication_provider.dart';

import 'package:helmet_iot/views/signup_screen.dart';

import 'package:helmet_iot/views/text_field.dart';

import 'package:provider/provider.dart';

class LoginScreen extends StatefulWidget {

 const LoginScreen({Key? key}) : super(key: key);

 @override

 State<LoginScreen> createState() => _LoginScreenState();

}

class _LoginScreenState extends State<LoginScreen> {

 String email = '';

 bool showEmailErrorMessage = false;

 String password = '';

 bool showPasswordErrorMessage = false;

 bool showPassword = false;

 String validatePasswordText(String value) {

 final sanetizeValue = value.trim();

 if (sanetizeValue.isEmpty) return "password is required";

 if (sanetizeValue.length < 6) {

 return "password must be 6 characters at least";

 }

 return '';

 }

136

 String validateEmailText(String value) {

 final sanetizeValue = value.trim();

 if (sanetizeValue.isEmpty) return "email is required";

 final bool emailValid = RegExp(

 r"^[a-zA-Z0-9.a-zA-Z0-9.!#$%&'*+-/=?^_`{|}~]+@[a-zA-Z0-9]+\.[a-zA-

Z]+")

 .hasMatch(email);

 if (!emailValid) return "please enter a valid email";

 return '';

 }

 bool get isEmailValid => validateEmailText(email).isEmpty;

 bool get isPasswordValid => validatePasswordText(password).isEmpty;

 String deviceToken = '';

 @override

 void initState() {

 super.initState();

 FirebaseMessaging.instance.getToken().then((value) {

 deviceToken = value ?? '';

 });

 }

 @override

 Widget build(BuildContext context) {

 final authenticationProvider = context.watch<AuthenticationProvider>();

 return Scaffold(

 body: Align(

 alignment: const Alignment(0, -1 / 4),

 child: SingleChildScrollView(

 child: Padding(

 padding: const EdgeInsets.symmetric(

137

 horizontal: 16,

 vertical: 20,

),

 child: Column(

 crossAxisAlignment: CrossAxisAlignment.center,

 children: [

 const Text(

 'Login',

 style: TextStyle(

 fontSize: 36,

 fontWeight: FontWeight.w600,

),

),

 const SizedBox(height: 50),

 TextFieldWidget(

 onChanged: (value) {

 setState(() {

 showEmailErrorMessage = true;

 email = value;

 });

 },

 label: "Email",

 errorText:

 showEmailErrorMessage ? validateEmailText(email) : "",

),

 const SizedBox(height: 6),

 TextFieldWidget(

 onChanged: (value) {

 setState(() {

 showPasswordErrorMessage = true;

 password = value;

 });

 },

 label: "Password",

138

 errorText: showPasswordErrorMessage

 ? validatePasswordText(password)

 : "",

 isPassword: !showPassword,

 suffix: IconButton(

 onPressed: () {

 setState(() {

 showPassword = !showPassword;

 });

 },

 icon: Icon(

 showPassword ? Icons.visibility : Icons.visibility_off,

),

),

),

 const SizedBox(height: 50),

 ElevatedButton(

 onPressed: () {

 if (isEmailValid && isPasswordValid) {

 context.read<AuthenticationProvider>().login(

 email: email,

 password: password,

 deviceToken: deviceToken,

 context: context,

);

 }

 FocusScope.of(context).unfocus();

 },

 child: authenticationProvider.isLoading

 ? const Center(

 child: CircularProgressIndicator(

 color: Colors.white,

),

)

139

 : const Text(

 "Login",

 style: TextStyle(

 fontSize: 18,

 color: Colors.white,

 fontWeight: FontWeight.w600,

),

),

),

 const SizedBox(height: 30),

 ElevatedButton(

 style: ElevatedButton.styleFrom(

 backgroundColor: Colors.white,

),

 onPressed: () {

 Navigator.of(context).push(

 MaterialPageRoute(

 builder: (context) {

 return const SignUpScreen();

 },

),

);

 },

 child: Text(

 "Create A new Account",

 style: TextStyle(

 fontSize: 17,

 color: Theme.of(context).primaryColor,

 fontWeight: FontWeight.w600,

),

),

),

],

),

140

),

),

),

);

 }

}

141

Appendix B-13

// ignore_for_file: avoid_renaming_method_parameters

import 'package:cached_network_image/cached_network_image.dart';

import 'package:flutter/material.dart';

import 'package:flutter_map/flutter_map.dart';

import 'package:latlong2/latlong.dart';

final erbilLocation = LatLng(36.198572, 43.971241);

class MapWidget extends StatefulWidget {

 const MapWidget({

 Key? key,

 required this.onLocationSelected,

 this.isSmall = false,

 this.initialLocation,

 }) : super(key: key);

 final ValueChanged<LatLng> onLocationSelected;

 final bool isSmall;

 final LatLng? initialLocation;

 @override

 State<MapWidget> createState() => _MapWidgetState();

}

class _MapWidgetState extends State<MapWidget> {

 LatLng? currentLocation;

 @override

 void initState() {

142

 super.initState();

 if (widget.initialLocation != null) {

 setState(() {

 if (widget.initialLocation!.latitude == 0 &&

 widget.initialLocation!.longitude == 0) {

 currentLocation = erbilLocation;

 } else {

 currentLocation = LatLng(

 widget.initialLocation!.latitude,

 widget.initialLocation!.longitude,

);

 }

 });

 }

 }

 @override

 Widget build(BuildContext context) {

 final size = MediaQuery.of(context).size;

 return SafeArea(

 child: Material(

 type: MaterialType.transparency,

 child: Stack(

 children: [

 SizedBox(

 height: widget.isSmall ? size.height * 0.25 : size.height,

 child: ClipRRect(

 borderRadius: BorderRadius.circular(5),

 child: IgnorePointer(

 ignoring: widget.isSmall,

 child: FlutterMap(

 options: MapOptions(

 maxZoom: 18,

 zoom: widget.isSmall ? 11 : 15,

143

 center: currentLocation ?? erbilLocation,

 onTap: (tapPosition, latLng) {

 setState(() {

 currentLocation = latLng;

 });

 },

),

 layers: [

 TileLayerOptions(

 urlTemplate:

 'https://{s}.tile.openstreetmap.org/{z}/{x}/{y}.png',

 subdomains: ['a', 'b', 'c'],

 tileProvider: const CachedTileProvider(),

),

 MarkerLayerOptions(

 rotate: true,

 markers: [

 Marker(

 height: 60,

 width: 60,

 point: currentLocation ?? erbilLocation,

 builder: (ctx) => const Icon(

 Icons.location_on,

 size: 30,

 color: Colors.red,

),

),

],

),

],

),

),

),

),

144

 if (!widget.isSmall)

 Positioned(

 top: 10,

 right: 10,

 child: FloatingActionButton(

 heroTag: 'back_button',

 backgroundColor: Theme.of(context).primaryColor,

 onPressed: () {

 if (currentLocation != null) {

 widget.onLocationSelected(

 LatLng(

 currentLocation!.latitude,

 currentLocation!.longitude,

),

);

 }

 Navigator.of(context).pop();

 },

 child: const Icon(

 Icons.done,

 color: Colors.white,

),

),

),

 if (!widget.isSmall)

 Positioned(

 top: 10,

 left: 10,

 child: FloatingActionButton(

 heroTag: 'done_button',

 backgroundColor: Theme.of(context).primaryColor,

 onPressed: () {

 Navigator.of(context).pop();

 },

145

 child: const Icon(

 Icons.arrow_back,

 color: Colors.white,

),

),

),

],

),

),

);

 }

}

class CachedTileProvider extends TileProvider {

 const CachedTileProvider();

 @override

 ImageProvider getImage(Coords<num> cords, TileLayerOptions options) {

 return CachedNetworkImageProvider(

 getTileUrl(cords, options),

);

 }

}

146

Appendix B-14

// ignore_for_file: avoid_renaming_method_parameters

import 'dart:io';

import 'package:cached_network_image/cached_network_image.dart';

import 'package:flutter/material.dart';

import 'package:flutter_map/flutter_map.dart';

import 'package:latlong2/latlong.dart';

import 'package:location/location.dart';

import 'package:permission_handler/permission_handler.dart'

 hide PermissionStatus;

final erbilLocation = LatLng(36.198572, 43.971241);

class LiveLocation extends StatefulWidget {

 const LiveLocation({

 Key? key,

 this.initialLatLng,

 }) : super(key: key);

 final LatLng? initialLatLng;

 @override

 State<LiveLocation> createState() => _LiveLocationState();

}

class _LiveLocationState extends State<LiveLocation> {

 LatLng currentLocation = LatLng(0, 0);

 int currentIndex = 0;

147

 Future<void> _getUserLocation() async {

 final location = Location();

 var permissionGranted = await location.hasPermission();

 if (permissionGranted == PermissionStatus.denied) {

 permissionGranted = await location.requestPermission();

 if (permissionGranted != PermissionStatus.granted) {

 return;

 }

 }

 var serviceEnabled = await location.serviceEnabled();

 if (!(serviceEnabled)) {

 serviceEnabled = await location.requestService();

 if (!(serviceEnabled)) {

 return;

 }

 }

 final locationData = await location.getLocation();

 if (mounted) {

 setState(() {

 currentLocation = LatLng(

 locationData.latitude!,

 locationData.longitude!,

);

 });

 }

 }

 void _requestPermission() async {

 final location = Platform.isIOS

 ? await Permission.locationWhenInUse.request()

 : await Permission.location.request();

 if (location.isGranted) {

148

 _getUserLocation();

 }

 }

 @override

 void initState() {

 super.initState();

 if (widget.initialLatLng != null) {

 setState(() {

 currentLocation = widget.initialLatLng!;

 });

 } else {

 _requestPermission();

 }

 }

 final MapController mapController = MapController();

 @override

 Widget build(BuildContext context) {

 final size = MediaQuery.of(context).size;

 return Scaffold(

 appBar: AppBar(

 title: const Text("Live Location"),

),

 body: SizedBox(

 height: size.height,

 child: currentLocation.latitude == 0 && currentLocation.longitude == 0

 ? const Center(

 child: CircularProgressIndicator(),

)

 : ClipRRect(

 borderRadius: BorderRadius.circular(5),

 child: FlutterMap(

149

 mapController: mapController,

 options: MapOptions(

 maxZoom: 18,

 zoom: 15,

 center: currentLocation,

),

 layers: [

 TileLayerOptions(

 urlTemplate:

 'https://{s}.tile.openstreetmap.org/{z}/{x}/{y}.png',

 subdomains: ['a', 'b', 'c'],

 tileProvider: const CachedTileProvider(),

),

 MarkerLayerOptions(

 rotate: true,

 markers: [

 ...List.generate(1, (index) {

 return Marker(

 height: 80,

 width: 80,

 point: currentLocation,

 builder: (ctx) => Container(

 height: double.infinity,

 width: double.infinity,

 decoration: BoxDecoration(

 color: Theme.of(context)

 .primaryColor

 .withOpacity(0.15),

 shape: BoxShape.circle,

 border: Border.all(

 color: Theme.of(context).primaryColor,

),

),

 child: const Icon(

150

 Icons.location_on,

 color: Colors.red,

 size: 30,

),

),

);

 }),

],

),

],

),

),

),

);

 }

}

class CachedTileProvider extends TileProvider {

 const CachedTileProvider();

 @override

 ImageProvider getImage(Coords<num> cords, TileLayerOptions options) {

 return CachedNetworkImageProvider(

 getTileUrl(cords, options),

);

 }

}

151

Appendix B-15

import 'package:flutter/cupertino.dart';

import 'package:flutter/material.dart';

class EmergencyScreen extends StatefulWidget {

 const EmergencyScreen({Key? key}) : super(key: key);

 @override

 State<EmergencyScreen> createState() => _EmergencyScreenState();

}

class _EmergencyScreenState extends State<EmergencyScreen> {

 @override

 Widget build(BuildContext context) {

 return Scaffold(

 appBar: AppBar(),

);

 }

}

152

Appendix B-16

// ignore_for_file: use_build_context_synchronously

import 'package:flutter/material.dart';

import 'package:flutter_slidable/flutter_slidable.dart';

import 'package:helmet_iot/models/emergency_case.dart';

import 'package:helmet_iot/models/user.dart';

import 'package:helmet_iot/providers/authentication_provider.dart';

import 'package:helmet_iot/providers/emergency_case_provider.dart';

import 'package:helmet_iot/services/location.dart';

import 'package:helmet_iot/utils/utils.dart';

import 'package:helmet_iot/views/live_location_history.dart';

import 'package:helmet_iot/views/notifications.dart';

import 'package:intl/intl.dart';

import 'package:latlong2/latlong.dart';

import 'package:provider/provider.dart';

import 'package:timeago/timeago.dart' as timeago;

class EmergencyCasesScreen extends StatefulWidget {

 const EmergencyCasesScreen({Key? key, this.isAdmin = false})

 : super(key: key);

 final bool isAdmin;

 @override

 State<EmergencyCasesScreen> createState() =>

_EmergencyCasesScreenState();

}

class _EmergencyCasesScreenState extends State<EmergencyCasesScreen> {

 @override

 void initState() {

153

 super.initState();

 WidgetsBinding.instance.addPostFrameCallback((timeStamp) {

 final userId = context.read<AuthenticationProvider>().user.id;

 if (widget.isAdmin) {

 context.read<EmergencyCaseProvider>().getCases(context, userId, false);

 } else {

 context.read<EmergencyCaseProvider>().getCases(context, userId, true);

 }

 });

 }

 @override

 Widget build(BuildContext context) {

 final casesProvider = context.watch<EmergencyCaseProvider>();

 final currentUser = context.read<AuthenticationProvider>().user;

 return Scaffold(

 floatingActionButton: currentUser.isWorker

 ? FloatingActionButton.extended(

 backgroundColor: Theme.of(context).primaryColor,

 onPressed: () async {

 if (!currentUser.isHelmetEnabled) {

 showSnackBar(

 context: context,

 message:

 "Your protection is off you can't submit emergency request",

);

 return;

 }

 final location = await LocationService().getUserLocation();

 if (location == null) return;

 final emergencyCase = EmergencyCase(

 longitude: location.longitude!,

 latitude: location.latitude!,

154

 userId: currentUser.id,

 emergencyId: '',

 createdAt: DateTime.now(),

 userAccount: currentUser,

);

 await context.read<EmergencyCaseProvider>().addCase(

 context,

 emergencyCase,

);

 },

 label: const Text('Request Emergency'),

)

 : null,

 appBar: AppBar(

 title: const Text("Emergency Cases"),

 actions: [

 if (widget.isAdmin) ...[

 IconButton(

 onPressed: () {

 Navigator.of(context).push(

 MaterialPageRoute(

 builder: (context) {

 return const NotificationsScreen();

 },

),

);

 },

 icon: const Icon(Icons.notifications),

),

 TextButton(

 style: TextButton.styleFrom(

 foregroundColor: Colors.white,

),

155

 onPressed: () {

 context.read<AuthenticationProvider>().logout(context: context);

 },

 child: const Text('Logout'),

),

]

],

),

 body: Stack(

 children: [

 !casesProvider.isLoading && casesProvider.cases.isEmpty

 ? const Center(

 child: Text("There is no cases submitted yet"),

)

 : Column(

 children: [

 if (widget.isAdmin) const _SearchField(),

 Expanded(

 child: ListView.builder(

 padding: const EdgeInsets.all(16),

 itemCount: casesProvider.searchText.isNotEmpty

 ? casesProvider.searchedCases.length

 : casesProvider.cases.length,

 itemBuilder: (context, index) {

 final emergencyCase =

 casesProvider.searchText.isNotEmpty

 ? casesProvider.searchedCases[index]

 : casesProvider.cases[index];

 final user = emergencyCase.userAccount;

 final emergency = emergencyCase.emergencyAccount;

 return _EmergencyCaseCard(

 emergency: emergency,

 user: user,

156

 emergencyCase: emergencyCase,

 index: index,

 isAdmin: widget.isAdmin,

);

 },

),

),

],

),

 if (casesProvider.isLoading)

 const Center(

 child: CircularProgressIndicator(),

),

],

),

);

 }

}

class _EmergencyCaseCard extends StatefulWidget {

 final User emergency;

 final User user;

 final EmergencyCase emergencyCase;

 final int index;

 final bool isAdmin;

 const _EmergencyCaseCard({

 Key? key,

 required this.emergency,

 required this.user,

 required this.emergencyCase,

 required this.index,

 required this.isAdmin,

 }) : super(key: key);

157

 @override

 State<_EmergencyCaseCard> createState() => _EmergencyCaseCardState();

}

class _EmergencyCaseCardState extends State<_EmergencyCaseCard> {

 void updateCase(EmergencyCase emergencyCase, EmergencyCaseStatus

status) {

 final currentUser = context.read<AuthenticationProvider>().user;

 context.read<EmergencyCaseProvider>().updateCase(

 context,

 emergencyCase.copyWith(

 caseStatus: status,

 emergencyId: currentUser.id,

),

);

 }

 @override

 Widget build(BuildContext context) {

 final currentUser = context.read<AuthenticationProvider>().user;

 return Card(

 margin: const EdgeInsets.only(bottom: 10),

 child: Slidable(

 key: ValueKey(widget.index),

 endActionPane: !widget.isAdmin

 ? null

 : ActionPane(

 extentRatio: 0.7,

 motion: const ScrollMotion(),

 children: [

 SlidableAction(

 onPressed: (_) {

158

 updateCase(

 widget.emergencyCase,

 EmergencyCaseStatus.rejected,

);

 },

 backgroundColor: Colors.red,

 foregroundColor: Colors.white,

 icon: Icons.close,

 label: 'Reject',

),

 SlidableAction(

 onPressed: (_) {

 updateCase(

 widget.emergencyCase,

 EmergencyCaseStatus.approved,

);

 },

 backgroundColor: Colors.green,

 foregroundColor: Colors.white,

 icon: Icons.local_hospital,

 label: 'Approve',

),

 SlidableAction(

 onPressed: (_) {

 updateCase(

 widget.emergencyCase,

 EmergencyCaseStatus.done,

);

 },

 backgroundColor: Colors.blue,

 foregroundColor: Colors.white,

 icon: Icons.done,

 label: 'Done',

),

159

],

),

 child: Column(

 crossAxisAlignment: CrossAxisAlignment.start,

 children: [

 ExpansionTile(

 leading: CircleAvatar(

 backgroundColor: Theme.of(context).primaryColor,

 child: Text(

 "${widget.index + 1}",

 style: const TextStyle(

 color: Colors.white,

),

),

),

 title: Text(

 currentUser.isWorker

 ? "Case ${widget.index + 1}"

 : widget.user.username,

 style: const TextStyle(

 color: Colors.black,

),

),

 trailing: Text(

 timeago.format(

 widget.emergencyCase.createdAt!,

 locale: 'en_short',

),

 style: const TextStyle(

 color: Colors.grey,

 fontSize: 14,

),

),

 subtitle: Text(

160

 widget.emergencyCase.caseStatus.name,

 style: TextStyle(

 color: Colors.grey.shade700,

 fontSize: 13,

),

),

 children: [

 const Divider(

 thickness: 1.1,

 height: 1,

),

 Padding(

 padding: const EdgeInsets.all(12),

 child: SingleChildScrollView(

 scrollDirection: Axis.horizontal,

 child: Row(

 mainAxisAlignment: MainAxisAlignment.spaceEvenly,

 children: [

 if (widget.isAdmin) ...[

 _ItemTile(

 iconData: Icons.person,

 label: widget.user.username,

),

 const SizedBox(width: 10),

],

 _ItemTile(

 onTap: () {

 Navigator.of(context).push(

 MaterialPageRoute(

 builder: (context) {

 return LiveLocation(

 initialLatLng: LatLng(

 widget.emergencyCase.latitude,

 widget.emergencyCase.longitude,

161

),

);

 },

),

);

 },

 iconData: Icons.location_on,

 label: 'Location',

),

 const SizedBox(width: 10),

 if (widget.emergency.username.isNotEmpty &&

 !widget.isAdmin) ...[

 _ItemTile(

 iconData: Icons.emergency,

 label: widget.emergency.username,

),

 const SizedBox(width: 10),

],

 _ItemTile(

 iconData: Icons.category,

 label: widget.emergencyCase.caseStatus.name,

),

 const SizedBox(width: 10),

 if (!widget.isAdmin)

 _ItemTile(

 iconData: Icons.timer,

 label: DateFormat.yMMMd()

 .format(widget.emergencyCase.createdAt!),

),

],

),

),

),

 if (widget.isAdmin && widget.user.chronicDiseases.isNotEmpty)

162

 Padding(

 padding: const EdgeInsets.all(16),

 child: Align(

 alignment: Alignment.centerLeft,

 child: Column(

 crossAxisAlignment: CrossAxisAlignment.start,

 children: [

 Text.rich(

 TextSpan(

 text: 'Chronic Diseases: ',

 style: TextStyle(

 fontSize: 14,

 color: Colors.grey.shade700,

 fontWeight: FontWeight.w700,

),

),

),

 const SizedBox(height: 4),

 Text(

 widget.user.chronicDiseases,

 style: TextStyle(

 fontSize: 14,

 color: Colors.grey.shade700,

 fontWeight: FontWeight.w400,

 height: 1.6,

),

)

],

),

),

),

],

),

],

163

),

),

);

 }

}

class _ItemTile extends StatelessWidget {

 const _ItemTile({

 Key? key,

 required this.iconData,

 required this.label,

 this.onTap,

 }) : super(key: key);

 final IconData iconData;

 final String label;

 final VoidCallback? onTap;

 @override

 Widget build(BuildContext context) {

 return GestureDetector(

 onTap: onTap,

 child: SizedBox(

 child: Container(

 decoration: BoxDecoration(

 border: Border.all(

 color: Colors.grey.shade200,

),

 borderRadius: BorderRadius.circular(10),

),

 padding: const EdgeInsets.symmetric(horizontal: 16, vertical: 10),

 child: Column(

 crossAxisAlignment: CrossAxisAlignment.center,

 children: [

 CircleAvatar(

164

 radius: 20,

 backgroundColor:

 Theme.of(context).backgroundColor.withOpacity(0.15),

 child: Icon(

 iconData,

 size: 20,

 color: Theme.of(context).primaryColor,

),

),

 const SizedBox(height: 6),

 Text(

 label,

 style: TextStyle(

 fontSize: 14,

 color: Colors.grey.shade700,

 fontWeight: FontWeight.w500,

),

),

],

),

),

),

);

 }

}

class _SearchField extends StatefulWidget {

 const _SearchField({Key? key}) : super(key: key);

 @override

 State<_SearchField> createState() => _SearchFieldState();

}

class _SearchFieldState extends State<_SearchField> {

165

 final TextEditingController textEditingController = TextEditingController();

 @override

 void dispose() {

 textEditingController.dispose();

 super.dispose();

 }

 @override

 Widget build(BuildContext context) {

 final searchText = context.watch<EmergencyCaseProvider>().searchText;

 final border = OutlineInputBorder(

 borderSide: BorderSide(

 color: Colors.grey.shade300,

),

);

 return Container(

 margin: const EdgeInsets.all(16).copyWith(bottom: 0),

 decoration: BoxDecoration(

 borderRadius: BorderRadius.circular(5),

 boxShadow: const [

 BoxShadow(color: Colors.black12, spreadRadius: 0, blurRadius: 3),

],

),

 child: TextField(

 controller: textEditingController,

 onChanged: (value) {

 context.read<EmergencyCaseProvider>().search(value);

 },

 decoration: InputDecoration(

 border: border,

 enabledBorder: border,

 focusedBorder: border,

 filled: true,

166

 fillColor: Colors.white,

 hintText: "Search for cases",

 prefixIcon: Icon(

 Icons.search,

 color: Theme.of(context).primaryColor,

),

 suffixIcon: searchText.isNotEmpty

 ? IconButton(

 onPressed: () {

 context.read<EmergencyCaseProvider>().clearSearch();

 textEditingController.clear();

 },

 icon: Icon(

 Icons.close,

 color: Theme.of(context).primaryColor,

),

)

 : null,

),

),

);

 }

}

167

Appendix B-17

import 'package:flutter/material.dart';

class TextFieldWidget extends StatelessWidget {

 const TextFieldWidget({

 super.key,

 required this.onChanged,

 required this.label,

 this.initialValue = '',

 this.suffix,

 this.isPassword = false,

 this.errorText = '',

 this.maxLines = 1,

 });

 final ValueChanged<String> onChanged;

 final String label;

 final bool isPassword;

 final Widget? suffix;

 final String initialValue;

 final String errorText;

 final int maxLines;

 @override

 Widget build(BuildContext context) {

 return Padding(

 padding: const EdgeInsets.only(bottom: 20),

 child: Column(

 crossAxisAlignment: CrossAxisAlignment.start,

 children: [

 SizedBox(

168

 height: maxLines == 1 ? 55 : null,

 child: TextFormField(

 maxLines: maxLines,

 initialValue: initialValue,

 onChanged: onChanged,

 obscureText: isPassword,

 style: const TextStyle(

 color: Colors.black,

 fontWeight: FontWeight.w500,

),

 decoration: InputDecoration(

 hintText: label,

 hintStyle: TextStyle(

 fontSize: 16,

 color: Colors.grey.shade800,

),

 suffixIcon: suffix,

),

),

),

 AnimatedSwitcher(

 duration: const Duration(milliseconds: 400),

 transitionBuilder: (child, anim) {

 return SizeTransition(

 sizeFactor: anim,

 axisAlignment: -1,

 child: FadeTransition(

 opacity: anim,

 child: child,

),

);

 },

 child: errorText.isNotEmpty

 ? Padding(

169

 padding: const EdgeInsets.only(

 left: 2,

 right: 2,

 top: 2,

 bottom: 6,

),

 child: Text(

 errorText,

 style: const TextStyle(

 color: Colors.redAccent,

 fontSize: 13,

),

),

)

 : const SizedBox.shrink(),

),

],

),

);

 }

}

170

Appendix B-18

// File generated by FlutterFire CLI.

// ignore_for_file: lines_longer_than_80_chars,

avoid_classes_with_only_static_members

import 'package:firebase_core/firebase_core.dart' show FirebaseOptions;

import 'package:flutter/foundation.dart'

 show defaultTargetPlatform, kIsWeb, TargetPlatform;

/// Default [FirebaseOptions] for use with your Firebase apps.

///

/// Example:

/// dart

/// import 'firebase_options.dart';

/// // ...

/// await Firebase.initializeApp(

/// options: DefaultFirebaseOptions.currentPlatform,

///);

///

class DefaultFirebaseOptions {

 static FirebaseOptions get currentPlatform {

 if (kIsWeb) {

 throw UnsupportedError(

 'DefaultFirebaseOptions have not been configured for web - '

 'you can reconfigure this by running the FlutterFire CLI again.',

);

 }

 switch (defaultTargetPlatform) {

 case TargetPlatform.android:

 return android;

 case TargetPlatform.iOS:

 return ios;

171

 case TargetPlatform.macOS:

 throw UnsupportedError(

 'DefaultFirebaseOptions have not been configured for macos - '

 'you can reconfigure this by running the FlutterFire CLI again.',

);

 case TargetPlatform.windows:

 throw UnsupportedError(

 'DefaultFirebaseOptions have not been configured for windows - '

 'you can reconfigure this by running the FlutterFire CLI again.',

);

 case TargetPlatform.linux:

 throw UnsupportedError(

 'DefaultFirebaseOptions have not been configured for linux - '

 'you can reconfigure this by running the FlutterFire CLI again.',

);

 default:

 throw UnsupportedError(

 'DefaultFirebaseOptions are not supported for this platform.',

);

 }

 }

 static const FirebaseOptions android = FirebaseOptions(

 apiKey: 'AIzaSyDhFiV8YlAGAifAeygH7myf0H2_ArBb74k',

 appId: '1:1036999106467:android:ef11bb42d2e49f32dd8416',

 messagingSenderId: '1036999106467',

 projectId: 'helmet-iot-692f4',

 storageBucket: 'helmet-iot-692f4.appspot.com',

);

 static const FirebaseOptions ios = FirebaseOptions(

 apiKey: 'AIzaSyCu_XbGT83FvmULtNSUtcNlIv_Op1R7yog',

 appId: '1:1036999106467:ios:42eeee6617fbaf45dd8416',

 messagingSenderId: '1036999106467',

172

 projectId: 'helmet-iot-692f4',

 storageBucket: 'helmet-iot-692f4.appspot.com',

 iosBundleId: 'com.example.helmetIot',

);

}

173

Appendix B-19

import 'package:firebase_core/firebase_core.dart';

import 'package:firebase_messaging/firebase_messaging.dart';

import 'package:flutter/material.dart';

import 'package:flutter/services.dart';

import 'package:helmet_iot/firebase_options.dart';

import 'package:helmet_iot/providers/authentication_provider.dart';

import 'package:helmet_iot/providers/emergency_case_provider.dart';

import 'package:helmet_iot/providers/notification_provider.dart';

import 'package:helmet_iot/providers/users_provider.dart';

import 'package:helmet_iot/repositories/authentication_repository.dart';

import 'package:helmet_iot/repositories/emergency_case_repository.dart';

import 'package:helmet_iot/repositories/notification_repository.dart';

import 'package:helmet_iot/repositories/user_repository.dart';

import 'package:helmet_iot/services/local_notification.dart';

import 'package:helmet_iot/services/local_storage.dart';

import 'package:helmet_iot/services/send_notification.dart';

import 'package:helmet_iot/views/cases_screen.dart';

import 'package:helmet_iot/views/login_screen.dart';

import 'package:helmet_iot/views/not_active.dart';

import 'package:helmet_iot/views/user_home_page.dart';

import 'package:helmet_iot/views/users_page.dart';

import 'package:provider/provider.dart';

void main() async {

WidgetsFlutterBinding.ensureInitialized();

await Firebase.initializeApp(options: DefaultFirebaseOptions.currentPlatform);

await LocalStorageService().init();

await LocalNotificationService().init();

174

await

SystemChrome.setPreferredOrientations([DeviceOrientation.portraitUp]);

SystemChrome.setSystemUIOverlayStyle(

const SystemUiOverlayStyle(

statusBarColor: Colors.transparent,

statusBarBrightness: Brightness.light,

statusBarIconBrightness: Brightness.dark,

),

);

return runApp(const App());

}

class App extends StatefulWidget {

const App({Key? key}) : super(key: key);

@override

State<App> createState() => _AppState();

}

class _AppState extends State<App> {

final FirebaseMessaging messaging = FirebaseMessaging.instance;

Future<void> requestPermissionAndRegister() async {

final settings = await messaging.requestPermission();

if (settings.authorizationStatus == AuthorizationStatus.authorized) {

FirebaseMessaging.onMessage.listen(

(RemoteMessage message) async {

if (message.notification != null) {

await LocalNotificationService().showNotification(

<String, dynamic>{

'title': message.notification!.title,

175

'body': message.notification!.body,

},

);

}

},

);

}

}

@override

void initState() {

super.initState();

requestPermissionAndRegister();

}

@override

Widget build(BuildContext context) {

return MultiProvider(

providers: [

ChangeNotifierProvider(create: (context) {

return AuthenticationProvider(

localStorageService: LocalStorageService(),

authenticationRepository: AuthenticationRepository(),

userRepository: UserRepository(),

);

}),

],

child: Builder(

builder: (context) {

final user = context.watch<AuthenticationProvider>().user;

return MultiProvider(

providers: [

ChangeNotifierProvider(create: (context) {

176

return UsersProvider(

userRepository: UserRepository(),

);

}),

ChangeNotifierProvider(create: (context) {

return NotificationProvider(

notificationsRepository: NotificationRepository(),

sendNotificationService: const SendNotificationService(),

);

}),

ChangeNotifierProvider(create: (context) {

return EmergencyCaseProvider(

emergencyCaseRepository: EmergencyCaseRepository(),

);

}),

],

child: MaterialApp(

debugShowCheckedModeBanner: false,

title: 'Helmet App',

theme: ThemeData.light().copyWith(

primaryColor: const Color(0xff2B72A8),

appBarTheme: const AppBarTheme(

systemOverlayStyle: SystemUiOverlayStyle(

statusBarIconBrightness: Brightness.light,

),

iconTheme: IconThemeData(color: Colors.white),

backgroundColor: Color(0xff2B72A8),

),

elevatedButtonTheme: ElevatedButtonThemeData(

style: ButtonStyle(

minimumSize: MaterialStateProperty.all(

const Size(double.infinity, 50),

),

backgroundColor:

177

MaterialStateProperty.all(const Color(0xff2B72A8)),

),

),

),

home: Builder(

builder: (context) {

bool isUserAuthenticates = !user.isEmpty;

return isUserAuthenticates

? !user.isActive

? const NotActiveScreen()

: user.isAdmin

? const UsersScreen()

: user.isWorker

? const UserHomePage()

: EmergencyCasesScreen(

isAdmin: user.isEmergency,

)

: const LoginScreen();

},

),

),

);

},

),

);

}

}

178

Appendix B-20

// This is a basic Flutter widget test.

//

// To perform an interaction with a widget in your test, use the WidgetTester

// utility in the flutter_test package. For example, you can send tap and scroll

// gestures. You can also use WidgetTester to find child widgets in the widget

// tree, read text, and verify that the values of widget properties are correct.

import 'package:flutter/material.dart';

import 'package:flutter_test/flutter_test.dart';

import 'package:helmet_iot/main.dart';

void main() {

 testWidgets('Counter increments smoke test', (WidgetTester tester) async {

 // Build our app and trigger a frame.

 await tester.pumpWidget(const MyApp());

 // Verify that our counter starts at 0.

 expect(find.text('0'), findsOneWidget);

 expect(find.text('1'), findsNothing);

 // Tap the '+' icon and trigger a frame.

 await tester.tap(find.byIcon(Icons.add));

 await tester.pump();

 // Verify that our counter has incremented.

 expect(find.text('0'), findsNothing);

 expect(find.text('1'), findsOneWidget);

 });

179

}

