Digital Image Processing
a practical
Introduction
using Java™

Nick Efford

xvi List of Figures

12.1 Four different representations of the same information

12.2 Suitability of an image for delta compression

12.3 Two images and their entropies

124 An image to be compressed by Huffman coding and its histogram
12.5 Huffman tree for the image in Figure 12.4

12.6 Example of a JPEG quantisation table

12.7 Reordering of DCT coefficients

12.8 JPEGTool in action

12.9 The image of Figure 12.3(b), compressed using the lossy JPEG technique
[2.10 JPEG compression of simple, synthetic images

2.1 Part of the Mandelbrot set

12.12 First five iterations in the generation of a Koch curve

12.13 Examples of fractal image compression

12.14 Iterative reconstruction of a fractally-compressed image

299
302
304
305
306
311
312
314
315
316
317
317
319
320

Exercises 7

4. Anyone who has used a bitmap editing package such as Adobe Photoshop® or Corel
PhotoPAINT® has done some image processing, perhaps without even realising it. If
you have access to such a package, experiment with its facilities and then make a list
of the different types of operation that can be performed. (By the end of this book, you
will understand how many of these operations work.)

£ W ot e

-n

Colour 31

A rather complicated geometric transformation maps a colour from RGB space to HSI
space or vice versa. Gonzalez and Woods [20] give a detailed derivation of the conversion
formulae. Implementations of these formulae in C are given by Pitas [37] and by Crane [11].
Rather than creating equivalent Java implementations, we can take advantage of conversion
code built into Java’s Color class. The HSICalc application on the CD uses this code to
convert an RGB colour into an HSI colour. The RGB colour is specified on the command
line as a triplet of 8-bit integers; the HSI colour is written to standard output as three numbers
in the range 0.0-1.0. Source code for this program is shown in Listing 3.1.

LISTING 3.1 A program to convert RGB colours into values of hue, saturation and
intensity. A conversion method from Java's Color class is used.

import java.awt.Color;
import java.text.DecimalFormat;

public class HSICalc {
public static void main(String[] argv) {
if (argv.length > 2) {

int[] rgb = new int[3];
for (int i = 0; i < 35 ++i)
rgb[i] = Integer.parselnt(argv[i]);

float[] values = Color.RGBtoHSB(rgb[0], rgb[1]l, rgb[2], null);
String[] labels = { "H=", "§=", "I=" };

DecimalFormat floatValue = new DecimalFormat ("0.000");

for (dnt i =10y i € 8y +¥1)

System.out.println(labels[i] + floatValue.format(values([i]));

¥

else {
System.err.println("usage: java HSICalc r g b");
System.exit(1);

}

Images in Java 1.0/1.] 49

how values in the array are to be interpreted. We must create an instance of a concrete
subclass of ColorModel and pass it to the MemoryImageSource constructor along with
the array of pixel data. The AWT provides two concrete subclasses: IndexColorModel
and DirectColorModel. The former can be used to specify a greyscale and the latter is
used to specify RGB colour.

For example, let us suppose that we wish to create a greyscale image 320 pixels wide and
200 pixels high from an array of bytes called data. The first step is to create the appropriate
IndexColorModel, using

byte[] grey = new byte[256];
for (int i = 0; i < 256; ++i)
grey[i]l = (byte) i;
ColorModel greyModel =
new IndexColorModel(8, 256, grey, grey, grey);

IndexColorModel expects three arrays, specifying the values of red, green and blue as-
sociated with each index. By definition, the values of red, green and blue are equal for all
indices in greyscale images, so only one array needs to be created.

The next step is to create a MemoryImageSource object to act as producer of pixel data.
The Image object can then be created from this producer by means of the createImage ()
method:

ImageProducer producer =
new MemoryImageSource(320, 200, greyModel, data, 0, 320);
Image image = Toolkit.getDefaultToolkit().createImage (producer);

This example assumes a non-graphical application. If the code was featuring in an applet,
the createImage () method of that applet could be used instead of using a Toolkit. The
array data is a one-dimensional array of type byte. A left-to-right, top-to-bottom ordering
of pixel values is assumed. The last two parameters passed to the MemoryImageSource
constructor require some explanation. The first is the index of the first image pixel in the
array. This is usually 0; it might be a value other than 0 if a single array is used to hold
pixel data for more than one image. The second and final parameter is the amount of space
in the array that is devoted to a single row of image pixels. This is usually the same as
the width of the image, although it can be larger (in which case the extra bytes are skipped
when moving from one row to the next).

Now let us suppose that the image is an RGB colour image. This is slightly simpler to
deal with. Although we could create an instance of DirectColorModel to specify that
pixel values are RGB colours, this is not strictly necessary, as the default ColorModel for
images is an RGB model. Hence, we can create the Image object as follows:

ImageProducer producer =
new MemoryImageSource(320, 200, data, 0, 320);
Image image = Toolkit.getDefaultToolkit().createImage(producer);

If a MemoryImageSource is used as the producer, the ability to display or manipulate portions of the image as
data become available is lost [55].

Exercises 61

Write the equivalent program using CropImageFilter and compare the performance
of the two programs.

. The BufferedImage class can represent images having different pixel data types. Chap-
ter 3 described an alternative approach in which a different class is used for each data
type, the common attributes and behaviour being inherited from an abstract base class.
Compare and contrast these two approaches. (If you know C++, you might like to also
consider how features such as templates provide yet another way of representing images
that have different pixel data types.)

. Write a program that reads JPEG-compressed greyscale image data into a
BufferedImage and then iterates over all pixels in the image to determine the
minimum, maximum and mean grey levels, writing this information to System. out.

. Write a program that reads a colour image from a JPEG file into a BufferedImage
object and then counts the number of pixels with a colour similar fo some reference
colour. This reference colour should be specified as red, green and blue values on the
command line. ‘Similar’ in this case means that the distance between a colour and the
reference colour in RGB space is less than 10. What happens when you attempt to run
the program on a greyscale image?

Reading and writing images in Java 75

LISTING 5.4 Java method to encode an image in the SIF format.
1 public void encode(BufferedImage img) throws IOException, SIFEncoderException {
3 writeHeader (img) ;
4
5 if (img.getType() == BufferedImage.TYPE_BYTE_GRAY
6 ||l img.getType() == BufferedImage.TYPE_3BYTE_BGR) {
7
8 // Access the data buffer directly
9
10 DataBufferByte db = (DataBufferByte) img.getRaster().getDataBuifer();
n byte[] data = db.getData();
12 if (compression) {
13 DeflaterQutputStream deflater = new DeflaterQutputStream(output);
14 deflater.write(data, 0, data.length);
15 deflater.finish();
16 ¥
17 else {
18 output.write(data);
it output.flush();
0 }
21
2 }
23 else {
2%
2 // Write the image pixel-by-pixel
2
27 Raster raster = img.getRaster();
28 if (compression) {
29 DeflaterQutputStream deflater = new DeflaterOutputStream(output);
0 for (int y = 0; y < img.getHeight(); ++y)
3 for (int x = 0; x < img.getWidth(); ++x)
32 for (int i = 2; i >= 0; --1i)
3 deflater.write(raster.getSample(x, y, i));
34 deflater.finish();
35 }
36 else {
37 for (int y = 0; y < img.getHeight(); ++y)
8 for (int x = 0; x < img.getWidth(); ++x)
39 for (int i = 2; 1 >= §; --1)
40 output.write(raster.getSample(x, y, i));
41 output.flush();
a e
a
e }
45 ik

object with which we can address individual pixels. Then, for each pixel, we retrieve
samples in reverse order (blue, then green, then red) and write directly to the output stream
(line 40) or, if compression is required, to an instance of Def laterOutputStrean that we
have wrapped around the original output stream (line 33).

Printing 91

LISTING 5.11 Java code to halftone an image using a dither matrix. Indexing the matrix
with [y¥%n] [x¥%n] ensures that thresholds from the matrix are reused in a cyclic manner.
This achieves the effect of tiling the image with the matrix.

public static BufferedImage ditherByMatrix(BufferedImage image, int[][] matriz) {

int w = image.getWidth();
int h = image.getHeight();
int n = matrix.length;

BufferedImage ditheredImage =

new BufferedImage(w, h, BufferedImage.TYPE BYTE_BINARY);
Raster input = image.getRaster();

WritableRaster output = ditheredImage.getRaster();

for (int y = 0; y < h; ++y)
for (int x = 0; x < w; ++x)
if (input.getSample(x, y, 0) > matrix[y¥n] [x%nl)
output.setSample(x, y, 0, 1);

return ditheredImage;

Error diffusion

A third halftoning technique is error diffusion. This is aims to correct the errors introduced
by thresholding. We start by selecting a threshold, typically 128 for images with pixel values
in a 0-255 range. Pixels with values less than the threshold will map to 0 (black), whilst
those with values greater than or equal to the threshold will map to 255 (white). For pixels
whose original values are close to 0 or 255, this mapping is reasonable, but thresholding
performs less well for pixels whose values are close to the threshold level. For instance, a
grey level of 127 would be mapped onto 0—an ‘error’ of 127. Similarly, a grey level of
128 would be mapped onto 255—also an error of 127. The idea behind error diffusion is
to spread or diffuse this error to neighbouring pixels. The Floyd-Steinberg algorithm for
error diffusion distributes the error at any pixel amongst the four neighbours that are ahead
of that pixel, assuming a top-to-bottom, left-to-right traversal of the image (Figure 5.13).

Algorithm 5.1 illustrates how Floyd-Steinberg error diffusion is applied to an image.
Implementation of the algorithm is fairly straightforward. However, if we wish to keep the
original input image, we must be sure to copy it because it will be modified by the error
propagation process. Also, we must not attempt to propagate errors beyond the bounds of
the image. Finally, we must take care not to allow pixel values to fall below 0 or rise above
255 as a result of error propagation.

Listing 5.12 shows a Java implementation of the algorithm. An image halftoned by
error diffusion is shown in Figure 5.14. You can experiment with error diffusion of other
greyscale images by running the ErrorDiffusion application, provided on the CD. This
is similar to the Dither application described earlier, in that it can display the greyscale
image or the halftoned image, allowing the user to toggle between them.

Manipulation of pixel data 97

LISTING 5.14 Java code to enlarge an image by pixel replication.

public static BufferedImage enlarge(BufferedImage image, int n) {

int w = n*image.getWidth();

int h = n*image.getHeight();

BufferedImage enlargedImage =

new BufferedImage(w, h, image.getType());

for' (int y = 05 ¥y € hy ++y)
for (int x = 0; %X < w; ++x)
enlargedImage.setRGB(x, y, image.getRGB(x/n, y/n));

return enlargedlmage;

LISTING 5.15 Java code to shrink an image by skipping pixels.

public static BufferedImage shrink(BufferedImage image, int n) {

int w = image.getWidth() / n;

int h = image.getHeight() / n;
BufferedImage shrunkImage =

new BufferedImage(w, h, image.getType());

for (int vy = 0; 3 < by ++y)
for nt % =05 x € w; 2
shrunkImage.setRGB(x, y, image.getRGB(x*n, y*n));

return shrunkImage;

102 Basic image manipulation

5.7

Gomes and Velho [19] give amuch more detailed account of digital halftoning techniques.

The classic text is by Ulichney [47].

Further information on the applications of image subtraction and image division in remote

sensing is given by Mather [31].

Exercises

. Write a Java program that will

(a) Display an image

(b)Allow the user to select a region of interest (ROI)
(c) Extract this ROI from the image

(d)Write the ROI to a user-specified file

(The easiest way of doing this is probably to modify the MeanROT application described
in Section 5.5.1.)

. Verify by experiment that adding a sequence of noisy observations of a static scene will

reduce the noise level in the manner predicted by Equation 5.4.

You can generate experimental data by writing a program that adds random noise of
a given amplitude to an image. You should use a simple synthetic image similar to that
in Figure 5.16 for this purpose. To measure noise levels, you will need to compute the
standard deviation in grey level within a region of the image. (You could modify the
routines in Listing 5.13 for this purpose.) You should try to define a relative homogeneous
region in which to make measurements. (Why?)

. Write a Java program that subtracts two images and thresholds the absolute value of

the difference in grey level at each pixel. Test the program with images taken from a
sequence of some kind and see if you can identify the limitations of this approach for
the detection of change or motion.

© 0 W o th & W R &

Grey level mapping 115

LISTING 6.2 A Java class to support processing of B-bit greyscale images.

package com.pearsoneduc.ip.op;

import java.awt.RenderingHints;
import java.awt.geom.;
import java.awt.image.*;

public class StandardGreyOp implements BufferedImagelp {

public BufferedImage filter (BufferedImage src, BufferedImage dest) {
checkImage (src);
if (dest == null)
dest = createCompatibleDestImage(src, null);
WritableRaster raster = dest.getRaster();
src.copyData(raster) ;
return dest;

T

public BufferedImage createCompatibleDestImage(BufferedImage src,
ColorModel destModel) {
if (destModel == null)
destModel = src.getColorModel();

int width = src.getWidth();

int height = src.getHeight();

BufferedImage image = new BufferedImage(destModel,
destModel.createCompatibleWritableRaster(width, height),
destModel.isAlphaPremultiplied(), null);

return image;

}

public Rectangle2D getBounds2D(BufferedImage src) {
return src.getRaster().getBounds();

T

public Point2D getPoint2D(Point2D srcPoint, Point2D destPoint) {
if (destPoint == null)
destPoint = new Point2D.Float();
destPoint.setLocation(srcPoint.getX(), srcPoint.getY());
return destPoint;

1

public RenderingHints getRenderingHints() {
return null;

,

public veid checkImage (BufferedImage src) {
if (src.getType() != BufferedImage.TYPE_BYTE_GRAY)
throw new ImagingOpException("operation requires an 8-bit grey image");

Table 6.1

Image histograms 123

Selected methods of the Histogram class.

Method

Description

Histogram()

Histogram(Reader src)

Histogram(BufferedImage img)

Object clone()

boolean equals(Object otherHist)

void computeHistogram(BufferedImage img)
void read(Reader src)

void write(Writer dest)

void writeCumulative(Writer dest)

boolean sourcelsGrey()

int getNumBands ()

int getNumSamples()

int getFrequency(int value)

int getCumulativeFrequency(int value)

int getMinFrequency()
int getMaxFrequency()

int getMinValue()

int getMaxValue()

double getMeanValue()

Constructs an empty histogram.

Constructs a histogram by reading data from the
specified source.

Constructs a histogram from the specified image.
Returns a copy of this histogram.

Compares this histogram with another.
Computes a histogram of the specified image.
Reads histogram data from the specified source.

Writes histogram frequencies to the specified des-
tination.

Writes cumulative frequency data to the specified
destination.

Indicates whether the data source for this histogram
was a greyscale image or not.

Returns number of bands in histogram: 1 for
greyscale images, 3 for colour images.

Returns number of samples in histogram, equivalent
to the number of pixels in the source image.

Returns the frequency of occurrence of the specified
value.

Returns cumulative frequency for the specified
value.

Returns smallest frequency recorded in histogram.
Returns largest frequency recorded in histogram.

Returns minimum value for which counts have been
recorded.

Returns maximum value for which counts have been
recorded.

Returns mean value of this histogram.

Table 6.1. (This listis not exhaustive; for many ofthe ‘get’ methods, there are two versions—
one for colour images, in which the band has to be specified as the integer 0, 1 or 2, and
one for greyscale images. The table lists only the greyscale version.)

The Histogram class forms the basis of two applications included on the CD: CalcHist
and HistogramTool. CalcHist accepts two or three command line arguments. The first
is the filename of an image; the second is an output filename for the histogram of that image;
the third, which is optional, is an output filename for the cumulative histogram of that image.
The output data files have a simple text-based format, consisting of a single comment line

Convolution and correlation 135

X
-1 0 41

-1|-1/ 0|1 72|53|60

0|~2/ 0| 2 ¥ 76|56 |65

+1|-1]10| 1 88/78|82

Figure 7.1 A 3 x 3 convolution kernel and the corresponding image neighbourhood.

kernel by A and the image by f, the entire calculation is

gty — Bi-1.—-1) f&+1Lyp+1) -«
B(l,=1) Fle=—1, p=1) =
A(—1,0) f(x+1,v) +
h(0,0) flx, ¥ + (7.3)
AL =1, 5) +
M—& 1) Jfoad a1 =
h(0,1) flx,y—1) +
BiLA) fle =, p— 1)
This summation can be expressed more succinctly as
B, A
gy = Y > hGfE—jy—k. (7.4)

k=—1 j=—1
For the kernel and neighbourhood illustrated in Figure 7.1, the result of convolution is
gx,) =(—1x82)+ (1 x88) + (-2 x 65)+ (2 x 76) + (—1 x 60) + (1 x 72) = 40

Note that a new image (denoted g in Equation 7.4) has to be created to store the results
of convolution. We cannot perform the operation in place, because application of a kernel
to any pixel but the first would make use of values already altered by a prior convolution
operation.

Referring to Equation 7.3 and Figure 7.1, we can see that the kernel coefficients are taken
in sequence, starting at the top-left corner and ending at the bottom-right corner. The pixels
associated with these kernel coefficients are sequenced in precisely the opposite direction;
that is, starting from the bottom-right corner of the neighbourhood and ending at its top-
left corner. Note that if we were to rotate the kernel by 180°, then both sequences would
run in the same direction. Each kernel coefficient would then pair with the pixel directly
beneath it. This reordering seems more intuitive; indeed, it is assumed in several textbook

162 Neighbourhood operations

LISTING 7.4 A kernel class to support Gaussian low pass filtering,

package com.pearsoneduc.ip.op;

public class GaussianKernel extends StandardKernel {

public GaussianKernel() {
this(1.0£);
G4

public GaussianKernel(float sigma) {
super (getSize(sigma), getSize(sigma), createKernelData(sigma));

i

public static int getSize(float sigma) {
int radius = (int) Math.ceil(4.0f*sigma);
return 2xradius+i;

3

public static float[] createKernelData(float sigma) {
int n = (int) Math.ceil(4.0f*sigma);
int size = 2*n+1;

float[] data = new float[size*size];

double r, s = 2.0*sigma*sigma;
float norm = 0.0f;

int i = 0;
for (int y = -n; y <= n; ++y)
for (int x = =n; x <= n; ++x, ++i) {

r = Math.sqrt(x*x + y*y);
datal[i] = (float) Math.exp(-r*r/s);
norm += data[il;

}

for (i = 0; i < size*size; ++i)
data[i] /= norm;

return data;

i

public static void main(String[] argv) {
float sigma = 1.0f;
if (argv.length > 0)
sigma = Float.valueOf (argv[0]).floatValue();
StandardKernel kernel = new GaussianKernel(sigma);
kernel.write(new java.io.OutputStreamWriter(System.out));
¥

1.9

Exercises 187

Exercises

e

Convolution can produce an image which has a narrow border of black pixels. What
effect will this have on an operation such as histogram equalisation?

. Use the classes described in this chapter to create applications that perform high pass

and high boost filtering.

. Convolve the Sobel x and y kernels with the following 3 x 3 neighbourhood:

10 15 17
11 100 101
20 103 97

Then compute the magnitude and direction of the gradient vector.

. Modify the GaussianBlur application from the CD so that it switches to separable

convolution when filter size gets sufficiently large.

. The mean filter is a linear filter but the median filter is not. Explain why this is the case.

6. Given the 3 x 3 neighbourhood

176 177 172
174 2 170
7L 1720 170

calculate a new value for the central pixel using the mean and median filters. Compare
and comment on your results.

“Median filtering may reduce the number of occupied bins in a histogram. It will never
increase the numbers of occupied bins.” Is this true? Explain your reasoning.

Improve the histogram-based MedianFilter class so that it exploits overlapping neigh-
bourhoods. (Consult the references [3, 24, 37] for guidance if required.) Perform bench-
mark testing of this improved class with other implementations based on the quicksort
routine provided with Java 2 and your own implementation of insertion sort. (See Shaf-
fer [43] or other texts on algorithms for details.) Use the results of benchmarking to
create a hybrid median filter that uses the quickest technique for any given neighbourhood
size.

. Implement an alpha trimmed mean filter. (Inherit from RankFilterOp and use the

filter () implementation in that class as the basis of your new £ilter () method.)

Affine transformations 235

not taking account of the fact that matrix elements ag and by can have values other than 1
without there being any scaling.)
An existing AffineTransform can be modified in five different ways. It can be

e Replaced with a simple transformation

e Replaced with an arbitrary transformation

e Concatenated with a simple transformation

e Concatenated with an arbitrary transformation

e Preconcatenated with an arbitrary transformation

Methods that replace the existing transformation are listed in Table 9.4. The concatenation
methods, listed in Table 9.5, update the transformation matrix with an additional trans-
formation, rather than replacing it. The following example illustrates how these methods
work.

AffineTransform t = new AffineTransform();
t.setToTranslation (10, 20);
t.rotate(30.0%Math.PI/180.0);
AffineTransform translate =
AffineTransform.getTranslateInstance(5, 0);
t.concatenate(translate);
AffineTransform scale = AffineTransform.getScaleInstance(0.3, 0.3);
t.preConcatenate(scale);

The first line creates t as an identity transformation. This is then replaced by a translation of
10 units to the right and 20 units down. Next, a 30° rotation is added—so the transformation
is now a translation, followed by a rotation. The fourth and fifth lines create another
AffineTransform that performs a translation and concatenate it with t—with the result
that t is now a translation, followed by a rotation, followed by another translation. The
last two lines create a transformation object that scales by a factor 0.3 in both directions
and preconcatenate it with t. At this stage, t consists of a scaling, a translation, a rotation
and another translation. We should emphasise that this sequence of operations is merely
a convenient way to visualise the transformation. As far as an AffineTransform is
concerned, they are aggregated into a single transformation matrix.

Table 9.4 Methods to replace the current transformation of an AffineTransform
with a different transformation.

void setToldentity()

void setToTranslation(double tx, double ty)

void setToScale(double sx, double sx)

void setToRotation(double angle)

void setToRotation(double angle, double x, double y)

void setToShear(double sx, double sy)

void setTransform(AffineTransform newTransform)

252 Segmentation

where T is the threshold. This equation specifies 0 and 1 as output values, giving a true
binary image, but it is common to use 0 and 255 so that pixels appear black or white if the
output image is displayed. Note that thresholding can be performed in place; this means that
we can replace g(x, y) in Equation 10.1 by f(x, y) if we wish. A variation of Equation 10.1
is

0, flx,y)<T,
g('x' .v) = I! Tl '-.<.._ f(x‘ .\’) S T2' (10‘2)
0, Jlx,y) =15
This uses two thresholds to define a range of acceptable grey levels. Equations 10.1 and

10.2 can be visualised as mappings of input grey level onto output grey level, as illustrated
in Figure 10.1.

g g
1; 1;
i RSy il
> 0 >
%0 T > f o T, T f
(a) (b)
Figure 10.1 (a) Thresholding with a single threshold. (b) Thresholding with a pair of
thresholds.

Thresholding can be implemented in two ways. We can iterate over every pixel, applying
Equations 10.1 or 10.2 to each grey level; alternatively, we can apply these equations once
for all grey levels and store the results in a look-up table, which we use subsequently to map
the grey level of each pixel onto 0 or 1. The latter approach is marginally more efficient,
becoming more so as we increase the number of threshold levels.

In thresholded images, we usually regard the non-zero value as ‘interesting’ and a value
of 0 as having no significance. Hence, Equations 10.1 and 10.2 assume that bright pixels
are of interest and dark pixels are not. If the goal of segmentation is to detect features that
are brighter than everything else in the image then this quite reasonable; if, however, we are
aiming to detect the darker features, then Equation 10.1 should be

I, FE<T,
; = - 1 .
glx, y) 0, fir,y)>T, (10.3)

and similarly for Equation 10.2.

282 Morphological image processing

BinaryStructElement must be supplied as a parameter to the constructor. For ex-
ample, to create an operator that erodes an image using a 5 x 5 diamond-shaped structuring
element, we would use the following code:

BinaryStructElement structElement =
new BinaryStructElement (StructElementTypes.DIAMOND_5x5) ;
BufferedImageOp erosion = new BinaryErodeOp(structElement);

We then simply need to invoke the filter () method of BinaryErodeOp in the usual
manner to perform the erosion. This method is shown in Listing 11.1. Lines 17-23 use the
dimensions of the input image together with the dimensions and origin of the structuring

LISTING | l.] BinaryErodeOp's filter () method.

package com.pearsoneduc.ip.op;

public BufferedImage filter(BufferedImage src, BufferedImage dest) {

checkImage(src);
if (dest == null)
dest = createCompatibleDestImage(src, null);

int w = src.getWidth(Q);

int h = src.getHeight();

Raster srcRaster = src.getRaster();
WritableRaster destRaster = dest.getRaster();

// Determine range of pixels for which operation can be performed

Point origin = structElement.getOrigin(null);

int xmin = Math.max(erigin.x, 0);

int ymin Math.max(origin.y, 0);

int xmax = origin.x + w — structElement.getWidth();
int ymax = origin.y + h - structElement.getHeight();
xmax = Math.min(w-1, xmax);

ymax = Math.min(h-1, ymax);

// Fit structuring element into source image

for (int y = ymin; y <= ymax; ++y)
for (int x = xmin; x <= xmax; ++x)
if (structElement.fits(srcRaster, x, y))
destRaster.setSample(x, y, 0, nonZeroValue);

return dest;

308 Image compression

shorter tokens. This limits the effectiveness of the technique in image compression. We
can envisage a scenario in which a sequence of pixel values near the top of an image is
duplicated near the bottom of the image. If the image is large compared with the size of
the window, the sequence of pixel values will no longer be in the dictionary when it is
encountered for the second time.

Another problem when using this technique for image compression is that it seeks exact
matches between strings in the look-ahead buffer and strings in the dictionary. Unfortu-
nately, in many images, sequences of pixels that appear to be identical to the human eye
may differ enough to prevent compression. For example, suppose that an image contain the
two nearby sequences

100,101,100,99,101 ...
101,101,99,100,100 . ..

The second sequence would look the same as the first but it would not be recognised as a
duplicate by a dictionary-based algorithm.

Dictionary-based compression in Java

Java provides a range of classes in the java.util.zip package to support compression
via the deflation algorithm described above. Full details can be found in reference books
describing Java version 1.1 onwards [21, for example]. We shall restrict ourselves here to
showing some Java code that can be used to experiment with dictionary-based compression
of images.

The java.util.zip provides a class called DeflaterOutputStrean that can be used
to write data to a stream in compressed form. Compressing an array of bytes named data
can be as simple as

DeflaterOutputStream output =
new DeflaterOutputStream(new FileOutputStream("compressed.dat"));
output.write(data, 0, data.length);

A DeflaterQutputStream uses an internal Deflater object as the compression engine.
If more control over compression is required, a custom Deflater can be created and used:

Deflater deflater = new Deflater();

// change deflater parameters here...

DeflaterOutputStream output =

new DeflaterOutputStream(new FileOutputStream("compressed.dat"),
deflater) ;

output.write(data, 0, data.length);

When the Deflater has done its job, we can query it to find out how many bytes of
compressed data were generated and then compute a compression ratio:

int n = deflater.getTotalOut();
System.out.println(n + " bytes written");

float ratio = (float) data.length / n;
System.out.println("Compression ratio = " + ratio);

Bibliography 333

[42] Robert J. Schalkoff. Digital Image Processing and Computer Vision. John Wiley &
Sons, 1989.

[43] Clifford A. Shaffer. A Practical Introduction to Data Structures and Algorithm Anal-
ysis. Prentice Hall, 1997.

[44] J. Shen and S. Castan. An optimal linear operator for step edge detection. Computer
Vision, Graphics and Image Processing: Graphical Models and Image Processing,
54(2):112-133, 1992.)

[45] Milan Sonka, Vaclav Hlavac, and Roger Boyle. Image Processing, Analysis and
Machine Vision. International Thomson Computer Press, 1993.

[46] Emanuele Trucco and Alessandro Verri. Infroductory Techniques for 3-D Computer
Vision. Prentice Hall, 1998.

[47] R. Ulichney. Digital Halftoning. MIT Press, 1987.
[48] Scott E. Umbaugh. Computer Vision and Image Processing. Prentice Hall, 1998.

[49] Gregory Wallace. The JPEG still picture compression standard. Communications of
the ACM, 34(4):30-44, 1991.

[50] Steven Webb, editor. The Physics of Medical Imaging. 10P Publishing, 1988.

[51] Russel Winder and Graham Roberts. Developing Java Software. John Wiley & Sons,
1998,

[52] G. W. Wolberg. Digital Image Warping. IEEE Computer Society Press, 1990.

[53] Jacob Ziv and Abraham Lempel. A universal algorithm for sequential data compres-
sion. IEEE Transactions on Information Theory, 23(3):337-343, May 1977.

[54] Jacob Ziv and Abraham Lempel. Compression of individual sequences via variable-
rate coding. IEEE Transactions on Information Theory, 24(5):530-536, September
1978.

[55] John Zukowski. Java AWT Reference. O’Reilly & Associates, 1997.

coma 10
complement 283, 284
complex conjugate symmetry 199
compression ratio 301
computed tomography 16
cones 13, 14, i4
confocal microscopy 38
contextual techniques 259-66
pixel connectivity 260-2
region growing 2636, 263, 266
region similarity 262
split and merge algorithm 266
contrast enhancement 5, 5
control grid 246
control points 246
convolution 13443
calculating 134-7
computational problems 137-41
circular indexing 739, 140-1
copying of input image pixels 138
failure at border 137-8, 138
image truncation 138-9
kernel truncation 139
reflected indexing 139-40, 739
in Java 145-53
example applications 151-3
improved convolution operator 14751
improved kernel class 146-7
performance issues [41-3
convolution kernel 134-7, 135
convolution theorem 213
correlation 143—4
calculation 143
critical flicker frequency 16
CRT monitor 80, 80
cubic interpolation 241-2, 242
cubic warp 246
cumulative histograms 118-20, 720

dark current 11
data, definition 299
decoders 6972
deconvolution 222-5, 223
Delta compression 302, 302
device specialised formats 63
dictionary-based coding 306-9
comparison of techniques 309
in Java 308-9
sliding window compression 307-8
difference of Gaussians (DoG) filter 170

Index 335

differential coding 302
digital elevation model (DEM) 3—4
dilation 278-81, 279-81
greyscale 292-3, 293
in Java 281-3
discrete cosine transform (DCT) 310
discrete Fourier transform (DFT) 194-205
disparity 16
display 80-7
hardware 80-1
ImageViewer application 87
software 817
using AWT 81-3
using Swing components 847
dither matrix 88-91
dithering 88-91
division of images 101

edge detection 164-75
Canny edge detector 171-3
in Java 174-5
complete edge detectors 1745
kernels 174
with first- and second-order derivatives
168, 169
Laplacian 168-71
simple detector 164—8
edge enhancement 164
edge localisation 164
electromagnetic (EM) spectrum 24, 2
encoders 72-3
energy sources 9
enlargement, image 96
entropy 303-5, 304
erosion 2768
greyscale 292-3, 293
in Java 281-3
error diffusion 91-2
exponential mapping
grey level 110, 770
eye, human 12-16
structure 12—15, 13

fnumber 10

factory methods 79

false contouring 27

fast Fourier transform (FFT) 197-8
fidelity criteria 301

field curvature 10

fields-based morphing 248

338 Index

morphological smoothing 294, 295
motion blur 5-6, 5
Motion Picture Experts Group (MPEG) 321

NASA Jet Propulsion Laboratory 4
nearest neighbour interpolation 239, 239,
241-2, 242
negation 106, 107
neighbourhood operations
adaptive filtering 185-6
convolution 13443, 145-53
correlation 1434
definition 133
edge detection 164-75
hybrid filtering 1845
linear filtering 15463
rank filtering 175-84
noise level 99
noise reduction 164
noise removal 99
non-maximal suppression 171, /72
nuclear magnetic resonance imaging 38
Nyquist criterion 23

opening of an image 2846, 285
greyscale 2934, 293, 294
idempotent 286
in Java 288-9

optic disc 13

optic nerve 13

optics 9-11

passive imaging 8—9

patterning 88

PBM format (portable bitmap) 645
reading images 69-73

period 188

periodicity 199

PGM (Portable Grey Map) format 64-5, 66
reading images 69-73

phase 189

phase spectrum 196, 197

photography 2

photopic vision 14

photosites 11

piecewise warping 246, 247, 248

pincushion distortion 11

pixel 21

pixel connectivity 260-2

PNG (Portable Network Graphics) format 64,
67-8, 68
reading images 767
point spread function (PSF) 223
polymorphism 42
power spectrum 196
angular integration 269, 269
radial integration 269, 269
PPM format (portable pixmap) 645
reading images 69-73
Prewitt jernels 165
primary colours 27
printing 88-94
colour images 924
greyscale images 88-92
processing graph 59
produced-consumer paradigm 47-50, 48
psychovisual redundancy 300
pupil 12
push model of image processing 47
pushbroom imaging 229

quadratic warp 246
quantisation 20, 27, 28
quantisation levels 27

radar 3
radial index 26
radioisotope imaging devices 21-2
range filter 182
Ranger 7 probe 4
rank filtering 175-84
in Java 1824
maximum filter 180-2, 187
median filter 175-9
minimum filter 1802, /180
range filter 182
reading images 68—79
rectangular sampling pattern 25, 25
redundancy 299, 300
reference frame 321
reflection of an image 96
region growing 2636, 263, 266
in Java 264-5
limitations 265-6
region of interest (ROI) 946
region similarity 262
remote execution model 59
remote sensing 101, 229, 298
renderable execution model 59

rendered execution model 59
restoration cutoff frequency 224
retina 13
RGB model 27-9
colour processing and 128
conversion to HIS space 31
ringing 214
rods 13, 14-15
root-mean-square (RMS) error 301
rotating detectors 17
rotation, image 96,
run length encoding (RLE) 303

sampling 20, 31-7
sampling pattern 24-7, 25
sampling rate 21
satellites 298
scotopic threshold 15
scotopic vision 14-15
sector index 26
segmentation
applications 250-1
contextual 251, 259-66
definition 250
non-contextual 251
thresholding 251-9

using grey level variance 267-8, 267-8

using other image properties 2669
using power spectrum 269, 269
self-similarity 317
shadow mask 80
shrinking an image 96, 229, 230
“SIF format’® 73-5
signature 63
sinc function 215
single-valued function 109
sinusoidal function 189, /189
sinusoidal variation 188-90
sliding window compression 3078
Sobel edge detection 165
Sobel kernels 165
software-specialised formats 63
spatial frequency 23, 155, 188-91
spatial resolution 224, 22
spectra of an image 195-7
display 206-7
edges 209, 210
simple periodic patterns 208, 209
of simple shapes 211-12, 2]1, 212
SpectralProbe 207, 208

Index 339

Spectrum 2067
SpectrumViewer 207, 207
spherical aberration 10
split and merge algorithm 266
stationary detectors /7
statistical coding 303—-6
stereoscopy 16
storage 62—8
archival 62-3
online 62
problems in 298-9
short-term 62
see also image compression
storage media 62-3
structuring element 271-2, 272, 272-3
closing 286-7, 286
erosion and 276-8
fitting and hitting 273-4, 273
hit and miss transform 287-8, 288
image dilation and 278-81, 279-81
in Java 274-6, 274
opening 2846, 285
subsampling, 229-30, 230
subtraction, image 99-100
synthetic aperture radar 3

tagged formats 64

templates 39

third-order interpolation 241

three-dimensional imaging 16—-19

thresholding 106, 106, 251-9
automatic selection 255

between two overlapping peaks 255, 253

colour 256-8

definition 251

edge maps created by 166, 166
histogram analysis 254, 254

importance of accurate selection 253, 253

in Java 258-9

of pixel grey level 251-5

in RGB space 236
TIFF (Tagged Image File Format) 64
tiled images 59
top-hat transform 294, 295
transform coding 310
transformation algorithms 236-9

uniformity predicate 262
union 283, 284
Unisys 307

340 Index

Unix 307
unsharp masking 158

video standards 21

video, compression in 3201
visual systemn, human 15-16, 26
volume 38

volumetric data 38, 3

voxel 38

warping 245-8
Wiener filter 225
windowing 200-3, 203

windowing function 200
World-Wide Web 299
wrapper classes 77, 77
writing images 6879

x-ray computed tomography (x-ray CT) 16—
17,38
x-rays 3, 3

zero crossing 168
zero-order interpolation 239, 239
zero-phase-shift filters 213

