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Preface 

Digital image processing is not a new phenomenon; techniques for the manipulation, correc­
tion and enhancement of digital images have been in practical use for over thirty years- an 
early application being the removal of defects from images obtained by NASA's unmanned 
lunar probes- and the underlying theoretical ideas have been around for a lot longer. We 
don't have to look very far these days to see an example of image processing at work It has 
insinuated itself into many different areas of human endeavour, ranging from small-scale 
activities such as desktop publishing and healthcare, through to activity on the largest scales 
imaginable: the search for natural resources on Earth, or the study of other planets, stars 
and galaxies in our universe. 

But there is a revolution happening right now in the field of digital imaging. No longer is 
this subject the sole province of the trained professional. Digital imaging is becoming part 
of everyday life. We can see evidence of this in the constant exposure we have to computer 
generated imagery and special effects through film and television; in the ever widening range 
of digital still and video cameras on sale to the general public at rapidly falling prices; and 
in the increasing numbers of new PCs that are sold already bundled with scanners or digital 
cameras, photo-quality printers and image manipulation software-allowing computer users 
the freedom to experiment with techniques that, only a decade ago, were confined to the 
laboratories of engineers and computer scientists. The days of photographic film as the 
standard medium for routine imaging tasks are, it seems, numbered-as are the days when 
only the specialist had the tools and skills necessary to do anything other than merely take 
a photograph. 

Becoming digital may have been inevitable, but a major accelerating factor in this change 
has surely been the internet or, more specifically, The World-Wide Web. The Web provides 
the medium through which millions of images are moved daily between computers at all 
points of the globe. The phenomenal growth of the Web has undoubtedly helped to make 
digital imaging more important than ever before, but digital imaging techniques have also 
helped to speed the growth of the Web; downloading of image-laden web pages across 
communications links of modest bandwidth is feasible only because many of those images 
have been compressed to small sizes using techniques from the realm of image processing. 
(These techniques are discussed further in Chapter 12.) This symbiotic relationship between 
the internet and imaging is certain to continue. 

Of course, the internet has been the breeding ground for many exciting new technologies 
in recent years, one of the most notable being Java. Java has established itself as a major 
new programming language, one that seems particularly well-suited to the development 
of software in today's nehvork-centric environments. But if the internet and imaging are 

xxi 
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linked, and Java is a key technology of the internet, it follows that there is a link between 
Java and digital imaging- a link that is a major motivating factor for this book. 

A great many books on image processing have appeared in recent years, so why add 
to the collection? What does this book, in particular, have to offer? Many existing texts 
give the subject a strong electrical engineering or physics perspective, or present a rigorous 
treatment ofthe subject that can be comprehended fully only ifthe reader possesses advanced 
mathematical skills. Others adopt a less theory-bound, more practical approach, but lack 
the examples or the software tools that would allow readers to develop their own image 
processing applications. Where software tools are provided, they are often inflexible and 
platform-specific. 

This book provides a practical introduction to image processing, avoiding unnecessary 
mathematical detail and focusing more on the computational aspects of the subject. It is 
aimed at a broad audience, but is likely to appeal most strongly to the computer enthusiast 
with some programming experience, or to those on an undergraduate computing course. r 
have tried to balance the conceptual with the practical; my intent is that the book should 
both explain the concepts and provide the computer-literate reader with the means of experi­
menting with those concepts, in order to achieve a deeper understanding of this complex and 
fascinating subject. The vehicle for this experimentation is Java. On the CD-ROM accom­
panying this book, you will find Java classes that you can use to develop your own, highly so­
phisticated image processing software. You will also find numerous ready-to-run tools, with 
which you can perform image processing experiments whether or not you have experience of 
programming in Java. Note that the book generally gives more emphasis to the explanation 
of concepts than to the description of programming techniques-so much of the text should 
be easily digestible by those lacking the skills or inclination to indulge in programming. 

The book is divided into twelve chapters. Most of these conclude with recommendations 
for further reading, along with a few exercises. A significant proportion of these exercises 
are programming projects using the tools provided on the CD-ROM. The first few chapters 
deal with the acquisition, digitisation and basic manipulation of images, and address the 
question of how images may be represented in Java programs. After this, one chapter deals 
with techniques for the enhancement of brightness, contrast and colour in images. A major 
part of the book is devoted to so-called 'neighbourhood operations', which may be used to 
blur or sharpen images, remove noise and detect edges. This is followed by another major 
chapter on what is probably the most difficult subject, conceptually, in the entire book: the 
processing of images in the frequency domain. 

Geometric operations on images, ranging from simple scaling and rotation up to complex, 
piecewise warping operations, are covered. Another chapter gives a brief introduction 
to the vast topic of image segmentation, the process by which meaningful features are 
extracted from images. The penultimate chapter of the book examines morphological 
image processing techniques, and the book concludes with a review of the various data 
compression algorithms that have been applied to images. A glossary of image processing 
terms is also provided. 

I hope that you enjoy reading the book and using the software that comes with it. It is 
my belief that, as we begin a new millennium and digital image processing expands into 
the frontiers opened up by the internet, there is a need for presentations of the subject based 
on tools designed for these new frontiers. I hope that this book helps in some small way to 
address that need. 
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In the broadest possible sense, images are pictures: a way of recording and presenting 
information visually. Pictures are important to us because they can be an extraordinarily 
effective medium for the storage and communication of information, Consider the familiar 
example of the photograph (Figure 1.1). We use photography in everyday life to create a 
permanent record of our visual experiences, and to help us share those experiences with 
others. In showing someone a photograph, we avoid the need for a lengthy, tedious and, in 
all likelihood, ambiguous verbal description of what was seen. This emphasises the point 
that humans are primarily visual creatures. We rely on our eyes for most of the information 
we receive concerning our surroundings, and our brains are particularly adept at visual data 
processing. There is thus a scientific basis for the well-known saying that 'a picture is worth 
a thousand words'. 

Figure 1.1 Example of a photograph, rich in information. 
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Photography is the imaging technique with which we are most familiar, simply because 
the information it records is similar to that which we receive using our eyes. Both human 
vision and photography require a light source to illuminate a scene. The light interacts with 
the objects in the scene and some of it reaches the observer, whereupon it is detected by the 
eyes or by a camera. Information about the objects in the scene is recorded as variations 
in the intensity and colour of the detected light. A key point is that, although a scene is 
(typically) three-dimensional, the image of that scene is always two-dimensional. 

There are other forms of energy, besides light, that can be used to create images. Light 
is merely the visible portion of the electromagnetic (EM) spectrum (Figure 1.2), which 
includes such things as x-rays and microwaves. EM radiation is produced by the oscillation 
of electrically charged material, and has wave-like properties. It travels rapidly, at approx­
imately 300,000 kilometres per second, allowing near-instantaneous imaging of events as 
they occur. Another useful property of EM radiation, for imaging purposes, is its tendency 
to travel in straight lines. This means that many of the geometric characteristics of objects 
in a scene are preserved in images of that scene. EM radiation can interact with matter 
in different ways, depending on its wavelength. Images acquired at different wavelengths 
may have very different properties, and we may need to be aware of these differences when 
seeking appropriate image processing techniques. 

1 0-12 

L 
gamma 

rays 

10-10 10-' 

x-rays uv 

violet blue 
~ 

400 

wavelength (f m) 

10-' 10-' 10-' 10' 
I . • IR microwaves FM radio 

light 

green yellow red 
------'-'1= 

500 

wavelength (f nm) 

600 700 

Figure 1.2 The spectrum of electromagnetic radiation. 
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The visible portion of the spectrum occurs between wavelengths of approximately 400 
and 700 nanometres (nm)l. Within this region, wavelength is perceived as colollr; light at 
550 om appears green, whereas light at 700 om is seen as red. At shorter wavelengths, EM 
radiation carries larger energies. In the x-ray region ofthe spectrum (at a wavelength, A, of 
around 1 O~ 10 m), it carries sufficient energy to penetrate a significant volume of material. 
X-ray images therefore reveal the internal strucrure of objects that are opaque to light- the 
human body being a prime example (Figure 1.3). 

I 1 nanometre = 10 9 metres 
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Figure 1,3 X-ray image of a child's hand. 

At still shorter wavelengths, EM radiation manifests itself as gamma rays, which are a 
common product of radioactive decay. Gamma rays are highly penetrating and, like x-rays, 
have medical applications. Whereas x-rays provide information on anatomy and internal 
structure, gamma ray imaging provides information on fimction [50]. Typically, the patient 
ingests a substance that is 'tagged' with a radioactive tracer. This tracer is taken up in 
varying amounts by different tissues in the body, according to their level of activity. A 
device known as a gamma camera collects gamma ray photons emitted by body tissues and 
forms an image from them. Vigorous, diseased tissue such as a tumour will often appear 
as a bright region in images of this kind. 

EM radiation with wavelengths longer than that of light also has its uses. Copious 
quantities of infrared OR) radiation are emitted from warm objects, so IR imaging can be 
used to locate people or moving vehicles even in conditions of total darkness. 'Synthetic 
aperture radar' (SAR) imaging techniques lise an artificially generated source of micro waves 
(A ~ 1-100 cm) to probe a scene. Radar is unaffected by cloud cover, and it has provided 
us with detailed images of the surface of Venus- a planet hidden from view at shorter 
wavelengths. Radar images can be difficult to interpret, owing to geometric distortions 
inherent in the imaging process, and to the presence of a significant noise component 
termed 'speckle' . 

We need not restrict ourselves to images based on the interactions of EM radiation with 
matter. In fact, any quantity that varies in two dimensions can be used to create an image. 
Consider, for example, Figure 1.4, showing the continent of Antarctica. This might look 
like a photograph obtained from space, but it is actually a rendering of a digital elevation 
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model (DEM) for the continent. Brighmess in this image represents height. The process of 
acquiring the data needed to form the image differs radically from the processes involved 
in, say, photography; however, this does not prevent us from manipulating the image in just 
the same way as a photograph. 

Figure 1.4 Digital elevation model of Antarctica, rendered as an image. 

1.2 What is image processing? 

Image processing is a general term for the wide range of techniques that exist for manip­
ulating and modifying images in various ways. Photographers and physicists can perform 
certain image processing operations using chemicals or optical equipment; in this book, 
however, we concern ourselves solely with digital image processing, i.e., that which is 
performed on digital images using computers. We will consider not only how digital im­
ages may be manipulated and enhanced, but also how they may be acquired, stored and 
represented in computer memory. 

Digital imaging actually predates modern computer technology; newspaper picrures were 
digitised for transatlantic transmission via submarine cable in the early 1920s (20). However, 
true digital image processing (DIP) was not possible nntil the advent of large-scale digital 
computing hardware. The early motivation for the development of DIP techniques carne 
from the space programme; in 1964, NASA's Jet PropUlsion Laboratory used computers to 
correct distortions in images ofthe lunar surface obtained by the Ranger 7 probe. Now, more 
than three decades later, DIP finds applications in areas as diverse as medicine, military 
reconnaisance and desktop publishing. 
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1.2.1 Example: contrast enhancement 

Manipulation of brightness, contrast and colour in images is very common. Often, there 
is a need to increase the contrast in an image, to make certain features clearly visible for 
the purposes of human interpretation. In Figure 1.5(a), for example, we sec an image of 
a car in which very little detail is visible. It is a simple matter to increase both brightness 
and contrast in this image, making it easier to identify the vehicle and read its number 
plate (Figure 1.5(b). We can envisage various scenarios-------criminal investigations, for 
example- in which this might be important. Chapter 6 discusses this class of techniques 
in detail. 

(a) (b) 

Figure 1.5 Example of contrast enhancement. (al Image of a car with an unreadable 
number plate. (b) Result of contrast stretching. 

1.2.2 Example: removal of motion blur 

Many image processing operations are meant to remove or suppress the defects present 
in images. Some defects manifest themselves as a blurring of the image. For example, 
imagine a military scenario in which an enemy aircraft must be identified from an image, 
but the speed of this aircraft is such that the image suffers from motion blur (Figure 1.6(a)). 

Figure 1.6 (a) Image of a jet degraded by motion blur. (b) Undegraded image. 
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Provided that we have accurate knowledge of how the aircraft was moving at the time of 
image acquisition, a technique known as deconvolution can be applied to remove the motion 
blur and hence assist identification (Figure 1.6(b ). This technique is discussed in Chapter 8. 

1.2.3 Example: image warping 

Image warping and morphing techniques are frequently used to produce special effects in 
advertisements, music videos and movies. Figure 1.7 shows how the image of a face can be 
distorted in an unnatural way. A more serious application for warping is the correction of 
various geometric distortions that result from the image acquisition process. Warping may 
also be used to register two or more images of the same scene, acquired at different times 
or with different instruments. Techniques for manipulating image geometry are discussed 
in Chapter 9. 

Ca) Cb) 

Figure 1.7 Example of image warping. Ca) Input image. Cb) Output image. 

1.3 Exercises 

1. What problems might we experience when creating images of the human body using 
x-rays? 

2. The digital elevation model depicted in Figure 1.4 is a two-dimensional array of height 
measurements rendered as an image. Can you think of any other examples of images 
that have been synthesised from data in this manner? 

3. If you own a photograph album, look through it and identify any photographs that you 
consider to be flawed or disappointing in some way. For each photograph, try to decide 
whether anything could be done to correct its defects using image processing. CYou 
might like to repeat this exercise once you have read more of the book and have a better 
idea of what is possible.) 
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4. Anyone who has used a bitmap editing package such as Adobe Photoshop® or Corel 
PhotoPAINT® has done some image processing, perhaps without even realising it. If 
you have access to such a package, experiment with its facilities and then make a list 
of the different types of operation that can be performed. (By the end of this book, you 
will understand how many of these operations work.) 



CHAPTER 2 

Imaging 

2.1 Introduction 8 
2.2 The electronic camera 9 
2.3 The human eye 12 
2.4 Three-dimensional imaging 16 
2.5 Further reading 19 
2.6 Exercises 19 

Imaging is the process oj acquiring images. In this chapter, we consider how images 
are obtained llsing an electronic camera and compare this mode of imaging with the 
way in which our eyes acquire images. We also consider briefly some examples of 
three-dimensional imaging technology. 

2.1 Introduction 

2.1.1 

Imaging is shorthand for image acquisition, the process of sensing our surroundings and 
then representing the measurements that are made in the form of an image. The sensing 
phase distinguishes image acquisition from image creation; the latter can be accomplished 
using an existing set of data, and does not require a sensor. (An example of this is the digital 
elevation model depicted in Figure I A .) 

Passive and active imaging 

We can classify imaging as either passive or active. Passive imaging employs energy sources 
that are already present in the scene, whereas active imaging involves the use of artificial 
energy sources to probe our surroundings. Passive imaging is subject to the limitations of 
existing energy sources; the Sun, for example, is a convenient source of illumination, but 
only during daylight hours. Active imaging is not restricted in this way, but it is invariably 
a more complicated and expensive procedure, since we must supply and control a source 
of radiation in addition to an imaging instrument. 

Active imaging predominates in the medical field, where precise control over radiation 
sources is essential in order to facilitate an accurate diagnosis and safeguard the patient's 
health. Active imaging is also becoming an important tool in remote sensing. Earth-orbiting 
satellites that carry sensors tuned to the visible region of the EM spectrum are unable to 

8 
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acquire useful images for areas of the surface that are in darkness, or that suffer from 
excessive cloud cover. Satellites equipped with synthetic aperture radar, on the other hand, 
can acquire data continuously, regardless of the time of day or the weather conditions. 

Ene rgy sources 

We have seen, in Chapter 1, that all regions of the EM spectrum are suited to imaging. 
Nevertheless, there are good reasons to prefer light for imaging, except where the application 
demands otherwise: 

o Light is familar, and is inherently safe. 

o Light can be generated reliably and cheaply. 

• Light is easy to control and process with optical hardware. 

o Light can be detected easily. 

The last point is important. Sensors for the visible and near-IR regions of the spectrum 
can be manufactured cheaply from silicon-which exhibits a useful response to radiation 
at these wavelengths. Also, the use of silicon allows a sensor to be integrated with its 
associated signal processing electronics, further reducing manufacturing costs. 

For the reasons given above, we shall concentrate on imaging equipment that uses light. 
We shall examine in detail how images are acquired by an electronic camera and compare 
its performance with that of our own imaging 'hardware': our eyes. 

2.2 The electronic camera 

2.2.1 Camera optics 

A camera uses a lens to focus part of the visual environment onto a sensor. The most 
important characteristics of a lens are its magnifying power and its light gathering capacity. 
The former can be specified by a magnification/actor, 

111= 
image size 

object size' 

By similar triangles, we can also say that 

v image size 

It object SIze 

where II is the distance from an object to the lens and v is the distance from the lens to the 
image plane (see Figure 2.1). Hence 

v 
m =-. 

" 
(2.1) 

It is usual to express the magnifying power of a lens in terms of its focal length, f, the 
distance from the lens to the point at which parallel incident rays converge (Figure 2.1). 
Focal length is given by the lens equation, 

I I I 
- = - +-. 
f u v 

(2.2) 

The units for f are usually millimetres. 
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Figure 2.1 Image formation using a lens. 

We can combine Equations 2.1 and 2.2 and rearrange to give an expression for f in terms 
of Ii and m: 

f=~. 
m+! 

(2.3) 

This is useful, since it allows us to select an appropriate lens for any desired magnification 
and object distance. Consider, for example, a scenario in which we need to form an image of 
a IO-em-wide object, 50 em away, on a sensor measuring 10 mm across. The magnification 
factor we require is 

image size 10 
111= - - - 01 

object size - ! 00 - . . 

Hence the focal length should be 

ltlll 500 x 0.1 
f = III + ! = 1.1 '" 45.5, 

i.e., we need a lens with a focal length of approximately 45 mm. 
The light gathering capacity of a camera lens is determined by its aperture. This can 

be no larger than the diameter oflhe lens itself, and it is usually made smaller than this by 
means of a diaphragm- a circular hole of adjustable size, incorporated into the lens. It is 
normal to express the aperture ofa lens as an 'fnumber'-a dimensionless value obtained 
when focal length is divided by aperture diameter. Most lenses offer a sequence of fixed 
apertures (e.g., f2.8 , f4, f5.6, fS, f! I) that progressively halve the total amount of light 
reaching the sensor. 

All lenses suffer from defects or aberrations, which can affect image quality. Spherical 
aberration arises when central and off-centre light rays are brought to a focus at different 
distances from the lens, resulting in blurred images. Coma occurs for obliquely-incident 
light when the off-centre rays come to a focus to one side of the central ray position, 
producing comet-shaped images of point objects. The surface of best focus for a lens is 
domed rather than planar, with the result that focus varies across an image acquired using a 
flat sensor. Field curvature measures the severity of this effect. Geometric distortion may 
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also be a problem, particularly for lenscs with small focal lengths. The tendency for straight 
lines to be bowed inwards, towards the centre of image, is temlcd pincushion distortion; 
the tendency for straight lines to be bowed outwards is termed barrel distortion. 

The lens of a camera typically consists of several separate lens elements, designed so that, 
in combination, they partially compensate for the aforementioned aberrations. The effects 
of aberrations can also be reduced by making the lens aperture as small as possible. This 
confers additional benefits: depth offield (the range of distances at which an object will be 
in focus) is increased; also, small apertures restrict the passage of light to the central part 
of the lens, which has the highest resolving power. However, small apertures also cut down 
the amount of light falling on the sensor, thereby reducing the sensitivity of the instrument 
and, consequently, the quality of the image. 

CCO sensors 

The charge-coupled device, or CeD, is a sensor based on modem semiconductor technology. 
CCDs have become the sensor of choice in imaging applications because they do not suffer 
from geometric distortion and have a linear response to indicident light-unlike the vacuum 
tube technology that preceded them. 

A CCD comprises an array of discrete imaging elements, or photosites , manufactured 
in silicon. The physical area of the array is small, typically less than I cm2 When light 
falls on a CCD, each photosite accumulates an amount of electric charge proportional to 
the illumination time and the intensity of incident illumination. A photosite has a finite 
capacity of about 106 charge carriers, which places an upper limit on the brightness of 
objects to be imaged. A saturated photosite can overflow, corrupting its neighbours and 
causing blooming. 

All CCDs produce thermally-generated charge, indistinguishable from charge produced 
by illumination. Hence, even in darkness, there will be some output from a CCD. This 
output is often called the dark current. In specialist applications such as astronomy, where 
light levels are extremely low and exposures are long, the dark current is a potentially 
significant source of noise. In such applications, CCDs are cooled to reduce dark current 
effects. 

Figure 2.2 shows the architecture ofa simple 'full-frame ' CCD. In order to retrieve image 
data, the accumulated charge must be shifted from the photosites in the imaging area into an 
output register, and thence to an amplifier that (typically) outputs a serial video signal. The 
charge shifting process is shown schematically in Figure 2.3. Sets of electrodes associated 
with the photosites are energised in sequence to transfer packets of charge toward the output. 
A 'transfer clock' generates a waveform for this purpose. The process is highly efficient; 
there is virtually ho loss of charge, even for packets of charge shifted from the furthest parts 
of the array. A defective photosite or electrode can prevent the advance of charge down a 
column, giving rise to a black line in the image. 

In the simple architecturc of Figure 2.2, a mechanical shutter is required to keep light 
away from the photosites during readout, lest there be smearing. Hence, this type of CCD 
is best suited to still image capture. Applications such as broadcast video use a ' frame 
transfer' architecture instead, in which the entire contents of the imaging area are shifted 
rapidly into a storage buffer that can be accessed whilst the imaging area is integrating the 
next frame. 
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Figure 2.3 Charge coupling in a CCD. 

2.3 The human eye 

2.3.1 Structure 

The human eye (Figure 2.4) is almost spherical in shape, with a diameter of approximately 
20 mm. At the front of the eye is the cornea, a tough, transparent tissue that provides 
protection and catries out initial focusing and concentration of incoming light. Behind the 
cornea is the iris, a diaphragm that can expand or contract to control the amount of light 
entering the main body of the eye. (Its central hole, the pupil, vaties in diameter from 
2 mm to about 8 mm.) Final focusing of the incoming light rays is perform by the lens, a 
transparent structure assembled from layers of fibrous cells. The lens absorbs about 8% of 
light in the visible region of the spectrum, absorption being highest at shorter wavelengths. 
Excessive amounts of IR or UV radiation can cause damage to lens proteins. 

The lens is suspended within the eye by means of the ciliary jibres, which are attached 
to ciliary muscles. An important difference between the lens of the eye and the lenses of 
artificial imaging instruments is that the former is flexible; it can change its shape by means 
of the ciliary muscles in order to adjust focus. The lens flattens to focus on distant objects 
and becomes thicker in order to focus on nearby objects. 

When the eye is properly focused, a sharp image of the outside world forms on the 
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Figure 2.4 Structure olthe human eye. 

retina. This is a thin, photoreceptive layer covering about 2000 of the eye's inner surface. 
The function of the retina is analogous to that of a CCD. However, the retina contains 
two different types of cell that act as photosites: rods and cones. There are about 120 x 
106 rods and 8 x 106 cones in the human eye, distributed across the retina as shown 
in Figure 2.5. Note that, unlike a typical CCD, the photoreceptors are distributed non­
uniformly. The cones are concentrated in a small region, approximately 1.5 mm in diameter, 
located where the optical axis intersects the retina. This region, the fovea, contains about 
300,000 cones. By comparison, a medium-resolution CCD will have a similar number of 
photosites contained within an area of about 7 mm x 7 mm. The superb eyesight of birds 
of prey is partially explained by the fact that, compared with humans, they have four times 
as many photo receptors packed into the fovea. 

The distribution of photo receptors is radially symmetric about the fovea, with the excep­
tion of a region about 20° from the optical axis. This region, the optic disc, contains no 
photoreceptors and corresponds to a perceptual blind spot. It is the point where connections 
from the photoreceptors are gathered into the optic nerve, which conveys visual infonnation 
to the brain in the form of electrical impulses. Note that, although there are nearly 130 
million phbtoreceptors in the retina, the optic nerve contains only a million fibres; evidently, 
a substantial amount of data integration and processing takes place within the retina itself. 
In this respect, the eye differs from a CCD-based camera, which typically relays all its data 
to an external computer for processing. 

The optic disc and the blind spot are consequences of the fact that the retina is ' inside-out'; 
that is, the photoreceptors are not the innermost layer of cells, and, furthermore, they point 
away from the light . This curious arrangement is common to all vertebrates, for whom 
the retina has evolved as an outgrowth of the brain. Throughout the retina, the neurons 
that gather information from photoreceptors lie directly above those photoreceptors and 
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Figure 2.5 Distribution of rods and cones across the human retina. 

represent an obstacle to the passage of incoming light. The exception is the fovea, where 
the retina is thinner because much of the overlying structure has been peeled away. This 
thinness is crucial for sharp vision. 

Cones come in three varieties. Very roughly, we can think of the three types as being 
sensitive to red, green and blue light, respectively. Note that a cone merely signals that light 
has arrived: colour perception is possible because the signals from many cones, of all three 
types, are combined. This is done at a very early stage of processing. Each cone is connected 
to its own nerve end; thus, it is cones which give us the ability to resolve fine detail. Rods 
are not colour sensitive, and several are connected to a single nerve end. Moreover, they are 
fOWld only outside the fovea, where they are far more numerous than cones. Consequently, 
rods serve to give us a lower-resolution picture of the entire field of view. 

Cones require plenty of light to operate; they are responsible for photopic ('bright-light') 
vision. Rods are sensitive to low levels of illumination, and give rise to scotopic ('dim-
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light') vision. Creatures with a preponderance of rods in their retinae, such as the owl, 
therefore tend to be active at night, whereas those with a preponderance of cones, such as 
the squirrel, tend to be active only during daylight hours. 

Properties of the human visual system 

The human visual system is capable of adapting to an enormous range oflight levels-far 
greater than that of any electronic imaging system. The upper and lower limits on intensity 
(the glare limit and the scotopic threshold, respectively) differ by a factor of 1010 Of 
course, our visual system cannot cope with such a huge intensity range simultaneously. It 
accomplishes the task by means of changes in the overall sensitivity of the eye, a phenomenon 
termed brightness adaption. The total range of intensity levels that can be discriminated 
simultaneously is small compared with the total adaption range. A typical person can 
perceive a few dozen different intensity changes at a single point in an image. However, as 
the eye roams around the image, the average background level changes, allowing a different 
set of intensity changes to be detected. 

There is a complex relationship between perceived brightness and light intensity. The 
fonner is, in fact, a logarithmic function of the latter. This can be seen in Figure 2.6, which 
shows a staircase of intensities ranging from black to white. A fixed intensity increment 
was used to generate this image, but to our visual system this increment appears to vary, 
being larger for the high intensity steps at the right of the image than for the low intensity 
steps at the left. 

Figure 2.6 A staircase of increasing intensity. 

Figure 2.6 illustrates another interesting phenomenon. Although each vertical band is 
uniform, we perceive it to be slightly brighter or darker near its edges than at its centre. This 
is known as Mach banding. The phenomenon is a direct consequence of the way in which 
the visual system amalgamates input from neighbouring photoreceptors 1 so as to sharpen 

1 We will see how the effcc( can be replicated with image processing when we consider the Laplacian operator in 
Chapter 7. 
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everything we see and increase visual acuity. 
When light arrives at a photoreceptor, it triggers chemical processes that, ultimately, result 

in the transmission of an electrical signal along a nerve fibre. These chemical processes last 
for several mi11iseconds, so the output from a photoreceptor is a time-averaged response. 
Electronic cameras can respond much more rapidly. As a consequence of the temporal 
smoothing performed by the retina, there is a 'critical flicker frequency' , below which we 
perceive the individual flashes of a blinking light, and above which the flashes fuse into 
a single, continuous image. Early motion pictures suffered from a visible flicker because 
their frame rates were not high enough for the eye to integrate the individual frames. 

2.4 Three-dimensional imaging 

A camera creates images that are projections of some limited part of our three-dimensional 
world onto a two-dimensional plane. [f we can somehow invert this projective transfor­
mation, we can recover information about the three-dimensional world from images. Un­
fortunately, a single image does not contain sufficient information to invert the projection. 
There is ambiguity because a given feature in the image could correspond to a large distant 
object or a small nearby object. This ambiguity can be resolved using multiple views of the 
scene. 

2.4.1 Stereoscopy 

2.4.2 

Our two eyes give us binocular vision. A point in the scene that we are viewing projects 
onto one point on the retina of the left eye and a different point on the retina of the right 
eye. The points are different because our eyes are separated by a few centimetres. The 
separation of the points is termed the disparity. There is an inverse relationship between 
disparity and depth in the scene; disparity will be relatively large for points in the scene that 
are near to us and relatively small for points that are far away. 

Following this principle, stereoscopic imaging uses a pair of images of the same scene 
obtained from cameras located at slightly different positions. Standard formulae exist to 
calculate depth from disparity, given adequate knowledge of imaging geometry (i.e., camera 
separation and focal length). However, a major problem is the detection of corresponding 
points in the left and right images, a process known as stereo matching. 

Computed tomography 

A range of techniques exist for imaging three-dimensional structure inside solid objects such 
as the human body. They require a source of EM radiation that penetrates the object; light 
is not suitable because solid objects tend to be opaque to radiation at visible wavelengths. 
X-rays are normally transmitted through the object. Sometimes, a radiation source is placed 
inside the object and the emitted radiation is detected. In medical imaging applications, this 
is done by having the patient ingest a substance that has been 'tagged' with a radioisotope. 
Gamma rays emitted by the radioactive decay of this radioisotope pass through the body to 
a detector. 

X-ray computed tomography (x-ray CT) is performed using a CT scanner. Figure 2.7 
shows two possible configurations of this instrument. The CT scanner builds up a three-
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dimensional image of an object as a sequence of parallel, two-dimensional slices, each sepa­
rated by some small fixed distance. Each slice is computed from multiple, one-dimensional 
'views'. A single view records the intensities of x-rays transmitted through the object in a 
particular plane and from a particular direction. The x-ray source and (in some scanners) 
the detector array rotate to obtain different views, all in the same plane but with different 
orientations. A complete set of views will cover 1800 in steps of a few degrees. 

x-ray tube 
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Figure 2.7 CT scanner configurations. (a) Rotating detectors. (b) Stationary detectors. 

Reconstruction of a two-dimensional image from these one-dimensional views is carried 
out by a technique known as filtered backprojection. In effect, this technique expands 
or projects each one-dimensional view back along the beam axis into the image plane. 
Summing these backprojected images over all views yields an image showing a cross­
section through the object. There is an inverse relationship between the sum computed at 
any point in this image and the opacity of the object at that point; small values occur at 
points where the object is relatively opaque to x·rays and large values occur at points where 
it is relatively transparent. 

We can illustrate how backprojection works with a simple example. Let us suppose 
that the circle in Figure 2.8 represents a cross-section through a cylindrical object of some 
kind. The projection of this shape in any direction has the form plotted in Figure 2.9(a). 
Backprojecting this view into two dimensions yie lds images such that in Figure 2.9(b). 
Now let us imagine that we have a set of these views, obtained from different directions. 
Backprojecting and summing these views produces inlages like those of Figure 2.10. We 
can see that, as the number of views being summed increases, the reconstructed image more 
closely resembles the original cross-section2. 

2 This is a fairly crude example. The reconstructed image will always be a little blurred compared with the 
cross·section, however many views are summed. Filtered backprojection solves this problem by incorporating 
a filtering operation that sharpens the image. Chapters 7 and 8 explain how operations of this kind can be 
performed. 
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Figure 2.8 A shape to be reconstructed by backprojection. 
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Figure 2.9 (a) Projection of the shape in Figure 2.8. (b) Backprojection of (a). 
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Figure 2.10 Reconstruction by backprojection. (a) Sum of two backprojected views. 
(b) Sum of four backprojected views. (c) Sum of eight backprojected views. 
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2.5 Further reading 

Awcock and Thomas [4] describe camera optics and sensor technology in some detail. 
Further information on CCDs and other types of sensor can also be found in Castleman's 
book [9]. A highly technical, in-depth description of CCD technology is presented by 
Janesick et al. [26]. The standard formats for the signals output by video cameras are 
explained in detail by Baxes [5]. 

Volume I of Glassner's Principles ofDigitalllllage Synthesis [17] gives much more detail 
on the human visual system. It covers topics such as depth and colour perception that we 
have barely touchcd on here. 

Stereoscopic imaging is discussed in a great many articles and books, especially those 
that focus on computer vision rather than the 100ver-Ievel topic of image processing [9, 20, 
25,42,45,46]. 

Baxes [5] gives a basic introduction to computed tomography. A slightly more thorough 
treatment is presented by Castleman [9]. Webb [50] discusses in considerable detail all 
aspects of tomographic medical imaging using x-rays and gamma rays. Webb also presents 
extensive discussion of magnetic resonance imaging (MRI), a powerful technique in which 
3D images of the body are formed by detecting radio waves emitted from the nuclei of 
hydrogen atoms resonating in a magnetic field. The complexity of MRI is such that further 
discussion lies beyond the scope of this book. Issues relating to the visualisation of 3D 
image data from MRI or computed tomography are discussed by Lichtenbelt et al. [28]. 

2.6 Exercises 

I. A camera with a lens of focal length 35 mrn acquires images of an object measuring 
roughly 50 cm across its largest dimension. Assuming that the object fills the 10 mm x 
10 mm array of the camera's CCD, how far away is the object? 

2. How might the sensor found in a flatbed scanner differ from the CCD found in a camera? 
What are the problems that can arise when scanning a document, and how might these 
problems manifest themselves in the scanned image? 

3. Suppose that we have a CCD with a defective photosite, resulting in a black line of 
missing data in the image. Suggest an operation that might correct this defect in the 
image. (You might wish to revisit this problem after reading the next chapter.) 

4. Write Java programs to compute projections of an image and then reconstruct that image 
from projections. 
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In this chapter, we consider the process of creating a digital image from data acquired 
by a camera or some other Allld of imaging instrument. We also consider how 
stich images are represented within the memOlY of a computer in order that image 
processing operations call be carried out on them. 

3.1 Introduction 

As we have seen in Chapter 2, the optics of an imaging system will focus a continuous, 
two-dimensional pattern of varying light intensity and colour onto a sensor. The pattern 
is defined in a coordinate system whose origin is conventionally defined as the upper-left 
corner of the image (Figure 3.1). We can describe the pattern by a function, I(x , y ). For 
monochrome images, the value of the function at any pair of coordinates, x and y , is the 
intensity of the light detected at that point. In the case of colour images, I (x, y) is a 
vector-valued function. Section 3.4 gives further details of how colour can be represented 
by a vector. 

The function I (x, y ) must be translated into a discrete array of numerical data if it is 
to undergo computer processing. This digital representation is only an approximation of 
the original image, but that is the price we must pay for the convenience of being able 
to manipulate the image using a computer. Translation of I(x , y ) into an appropriate 
numerical form is accomplished by the processes of sampling and quantisation. For 
standard video signals, both processes are usually carried out by a single piece of hardware, 
known as an analogue to digital converter (ADC). 

20 
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Figure 3.1 Coordinate system for an image. 

3.2 Sampling 

Sampling is the process of measuring the value of the image function f (x, y) at discrete 
intervals in space. Each sample corresponds to a small, square area of the image, known 
as a pixel. A digital image is a two-dimensional array of these pixels. Pixels are indexed 
by x and y coordinates, with x and y taking integer values. 

A CCD sensor consists of a discrete array of photosites, so it has, in effect, already 
sampled the radiation pattern that falls on it. However, in conventional video cameras these 
samples are converted into an analogue video signal for compatibility with the majority of 
video equipment in use today. 

A single frame from a standard video signal is already discrete in the y dimension, con­
sisting of either 525 or 625 lines of data. Sampling the signal therefore involves measuring 
its amplitude at regular time intervals during the segments of the signal that correspond to 
each line. This makes the image discrete spatially in the x dimension. 

Video standards enforce a particular sampling rate for a video signal. An RS-170 video 
signal, for instance, has 485 active lines and each frame must have an aspect ratio of 4:3, so 
there must be 485 x (4/3) = 646 samples per line. In practice, a few lines and samples are 
trimmed from the signal to give an array of pixels with dimensions 640 x 480. To produce 
such an image, a temporal sampling rate of around 12 MHz is required. 

With a digital 'still picture' camera, things are somewhat simpler, as there is no need to 
convert samples from the CCD into an analogue form and then resample. Neither is there 
a requirement to conform to broadcast video standards. Such cameras typically produce 
images with dimensions of 1024 x 768, 1280 x 1024, etc. These dimensions are chosen to 
suit display standards originating from the computer industry (e.g., SVGA). Much higher 
resolutions than those of broadcast video are possible, and a 4:3 aspect ratio is not enforced 
(although this is often preferred). 

Other types of imaging equipment operate under different constraints. In medicine, for 
example, radioisotope imaging devices produce images that are, of necessity, sampled very 
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coarsely. This is because images arc formed from gamma ray photons emitted by radioactive 
material inside the patient. For safety reasons, the quantity ofthi8 material is small, hence 
there are relatively few photons emitted. It is therefore necessary to integrate photon counts 
over a relatively large area in order to obtain statistically meaningful results [50]. An area 
the size of the chest, for example, might be represented by a 64 x 64-pixel array. 

3.2.1 Spatial resolution 

The spatial resolution ofan image is the physical size ofa pixel in that image; i.e. , the area 
in the scene that is represented by a single pixel in the image. For a given field of view, 
dense sampling will produce a high resolution image in which there are many pixels, each 
of which represents the contribution of a very small part of the scene; coarse sampling, 
on the other hand, will produce a low resolution image in which there are few pixels, each 
representing the contribution of a relatively large part of the scene to the image. 

Spatial resolution dictates the amount of useful information that can be extracted from an 
image. Fignre 3.2 illustrates this point emphatically with an image that is displayed at three 
different resolutions. You may conduct your own experiments on the effects of varying 

(a) (b) 

(c) 

Figure 3.2 Effect of resolution on image interpretation. (a) 8 x 8 image of a scene. 
(b) 32 x 32 image. (c) 256 x 256 image. 
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spatial resolution by running the ResolutionSimulator application, as described in the 
Exercises section at the end of this chapter. 

In deciding whether a digital image has been sampled appropriately, we must consider 
the rapidity with which the value of f (x, y) changes as we move across the image. This rate 
of change is measured by spatial frequency. Gradual changes in f(x, y) are characterised 
by low spatial frequencies and can be represented adequately in a coarsely-sampled image; 
rapid changes are characterised by high spatial frequencies and can be represented accurately 
only in a densely-sampled image. Wherever possible, the sampling that we choose for 
an image should satisfy the Nyquist criterion. Essentially, this states that the sampling 
frequency should be at least double the highest spatial frequency found in the image. lfwe 
sample an image coarsely, such that the Nyquist criterion is not met, then the image may 
suffer from the effects of aliasing. 

Figure 3.3 illustrates how aliasing can occur when sampling a quantity that varies in one 
dimension. (You can imagine this as a variation in intensity along an arbitrary line in a 2D 
image.) In aliasing, a signal of a certain frequency that has been undersampled can appear 
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Figure 3.3 Aliasing in one dimension. Top: an undersampled waveform. Bottom: 
aliased reconstruction of waveform from samples. 
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3.2.2 

\\U 
""" 

<a) (b) 

Figure 3.4 Aliasing artefacts in digital images. <a) Image without aliasing. (b) Coarsely, 
sampled version, showing aliasing artefacts. 

to be of a lower frequency upon reconstruction. This has the effect of distorting the signal, 
introducing frequency components that are unrepresentative of the original data. Figure 3.4 
shows the visible effect of aliasing in an image containing strong periodic variations in 
intensity. 

We will not, in general, have advance knowledge of the highest spatial frequency present 
in an image. Consequently, the sampling process is normally preceded by anti-aliasing. 
This is a filtering operation designed to remove frequencies that exceed half the sampling 
rate achieved by the ADC hardware, thereby guaranteeing that the Nyquist criterion is met. 

Sampling pattern 

When sampling an image, we need to consider not only the sampling rate, but also the 
physical arrangement of the samples. A rectangular pattern, in which pixels are aligned hor­
izontally and vertically into rows and columns, is by far the most conunon. Unfortunately, 
a rectangular sampling pattern leads to ambiguities in pixel connectivity. Figure 3.5(a) 
suggests that the chain of shaded pixels labelled A-D separates two regions of unshaded 
pixels, but this is not so; if we allow Band C to be connected diagonally, then it follows that 
E and F are also connected-in which case, the chain is not continuous and the two groups 
of unshaded pixels form a single region. 

A second problem with rectangular patterns is an inconsistency in distance measurement. 
Suppose that each pixel in Figure 3.5(a) represents a region of the scene that is I mm wide 
and I mm high. The distance between pixels C and D is thus I mm; however, the distance 
between pixels Band C is not I nun but.ti mm, by simple trigonometry. Hence, the actual 
distance travelled when we move by a fixed number of pixels in the image depends on the 
direction in which we move. 

These problems would be solved by a hexagonal sampling pattern (Figure 3.5b). Here, 
diagonal neighbours are properly connected, and the distance travelled in an image does 
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Figure 3.5 Connectivity of different sampling patterns. (a) Rectangular pattern. (b) 
Hexagonal pattern. 

not depend on direction. Despite these advantages, a hexagonal pattern is seldom used. It 
cannot portray accurately the large number of horizontal and vertical features found in many 
images, and, in any case, sensors and display hardware generally do not support hexagonal 
sampling. 

The rectangular and hexagonal patterns described above are unifonn, with the result that 
one part of an image is as important as any other part. This is useful in images intended 
for eventual human interpretation, for which prediction of where viewers will direct their 
attention is impossible. In other situations, where attention can be predicted or controlled, 
a non-uniform sampling scheme may be profitable. In particular, a log-polar sampling 
pattern has some interesting and useful properties. Figure 3.6 shows an array of pixels 
that conforms to this pattern. The pixels of this array are sectors with a fixed angular size 
and a radial size that increases logaritiunically with increasing distance from the centre. 
This gives high resolution near the centre of the array and low resolution in the periphery. 
Such an arrangement satisfies the conflicting requirements of good resolution and wide 
field of view. However, a camera using a sensor with this sampling pattern must always 
point towards the most interesting or important part of the scene, to ensure that it lies in the 

Figure 3.6 A log-polar array of pixels. 
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centre of the array and is therefore imaged at the highest possible resolution. This is known 
as an attentive vision strategy. 

Note that the photoreceptor distribution in the human retina broadly resembles that of a 
log-polar array. The part of the image that forms on the fovea is densely sampled by the 
tightly packed, well connected cones in that part ofthe retina; the remainder of the image is 
coarsely sampled by a more sparse population of rods. The human visual system supports 
attentive vision by means of eye, head and even body movements, thereby ensuring that the 
features of interest are always imaged using the fovea. 

A pixel coordinate in a log-polar array is specified by a radial index, r, and a sector index, 
(). If we plot these indices in Cartesian space, it becomes clear that changes in scale cause 
translations along the r axis , whereas rotation causes a cyclic shift along the e axis. This 

(a) (b) 

(c) (d) 

Figure 3.7 Benefits of log-polar sampling. (a) Original image. (b) Log-polar resampled 
version of (a). (c) Rotated image. (d) Log-polar resampled version of (c). This is equivalent 
to (b) after circular shifting. such that pixels moving beyond the right side border of the 
image reappear on its left side. 
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greatly simplifies scale- and rotation-invariant object recognition and matching tasks. This 
idea is illustrated in Figure 3.7. 

You can experiment further with log-polar sampling by running the LogPolar applica­
tion, as detailed in the Exercises for this chapter. 

3_3 Quantisation 

It is usual to digitise the values of the image function, lex, y), in addition to its spatial 
coordinates. Ihis process of quantisation involves replacing a continuously varying I ex, y) 
with a discrete set of quantisation levels. The accuracy with which variations in f(x, y) 
are represented is detennined by the number of quantisation levels that we use; the more 
levels we use, the better the approximation. 

Conventionally, a set of 11 quantisation levels comprises the integers 0,1,2, ... ,II - 1. 0 
and II - I are usually displayed or printed as black and white, respectively, with intermediate 
levels rendered in various shades of grey. Quantisation levels are therefore commonly 
referred to as grey levels. Ihe collective term for all the grey levels, ranging from black to 
white, is a grey scale. 

For convenient and efficient processing by a computer, the number of grey levels, 11, is 
usually an integral power of two. We may write 

(3.1 ) 

where b is the number of bits used for quantisation. b is typically 8, giving us images 
with 256 possible grey levels ranging from 0 (black) to 255 (white). Some ADCs are not 
capable of quantising to 8 bits, producing 6-bit or 7 -bit images instead (although these may 
subsequently be represented in memory using 8 bits per pixel). Ihe specialised equipment 
used in medicine and astronomy may produce images quantised using 10 or even 12 bits. 

Figure 3.8 shows how the number of quantisation levels affects image quality. The 
differences between 8-bit and 6-bit images are almost imperceptible. Coarser quantisation 
creates a 'false contouring' effect in an image, although this will not necessarily hamper 
interpretation. 

You can investigate the effect of varying the number of quantisation levels on image 
interpretation using the QuantisationSimulator program, as decribed in the Exercises. 

3.4 Colour 

3.4.1 The RGB model 

Much of our technology for creating and displaying colour is based on the empirical obser­
vation that a wide variety of colours can be obtained by mixing red, green and blue light 
in different proportions. For this reason, red (R), green (G) and blue (8) are described 
as the primmy colours of the additive colour system. Not all colours can be obtained in 
this way, but the teclmique is a powerful one, nonetheless. It would seem to suggest that 
a colour image can be formed by making three measurements of scene brightness at each 
pixel, using the red, green and blue components of the detected light. We can do this by 
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(a) (b) 

(c) 

Figure 3.8 Effect of quantisation on image interpretation. (a) 4 levels. (b) 16 levels. (c) 
256 levels. 

using a colour camera, in which the sensor is able to measure radiation at red, green and blue 
wavelengths for all points in the image, or by using a monochrome camera in conjunction 
with three special filters that block all but a narrow band of wavelengths centred on red, 
green and blue, respectively. 

In a colour image conforming to the ROB model, the value of fix, y) is a vector with 
three components, corresponding to R, G and B. In a normalised model, these components 
each vary between 0.0 and 1.0. R, G and B can be regarded as orthogonal axes defining a 
three-dimensional colour space. Every possible value of fix, y) is a point in this 'colour 
cube'. The primary colours red, green and blue are at the corners (1,0, 0), (0, 1, 0) and 
(0, o. I); the colours cyan, magenta and yellow are at the opposite corners; black is at the 
origin; white is at the corner furthest from the origin (Figure 3.9). Points on a straight line 
joining the origin to the most distant corner represent various shades of grey. 

Since each of the three components-red, green and blue- is nonnally quanti sed using 
8 bits, an image made up of these components is commonly described as a 24-bit colour 
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Figure 3.9 The RGB colour cube. 

image. Because each primary colour is represented to a precision of 1 part in 256, we can 
specify an arbitrary colour to a precision of about 1 part in 16 million!; that is, around 16 
million colours are available in a 24-bit image. 

Despite its importance in image acquisition and display, the RGB model is of limited use 
when processing colour images, because it is not a perceptual model. In perceptual terms, 
colour and intensity are distinct from one another, but the R, G and B components each 
contain both colour and intensity information. Models which decouple these two different 
types of information tend to be more useful for image processing. 

Other colour models 

The CMY model has as its primaries cyan (e), magenta (M) and yellow (Y). These are 
the primary colours of the subtractive system that describes how colour is produced from 
pigments. A CMY colour is derived from an RGB colour as follows: 

(3.2) 

I This is because 2563 = 16,777,216. 
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We can, in theory, produce almost any colour on paper by mixing cyan, magenta and yellow 
inks. In practice, this process cannot produce a satisfactory black, so a fourth component 
labelled K and representing black pigment is added, resulting in the CMYK model. This 
is the model that is used when generating hardcopy versions of digital images using colour 
printers (see Section 5.4.2). 

The HSI model is more suitable than the RGB modcl for many image processing tasks. 
Its three components are hue (H), saturation (S) and intensity (I). Hand S specify colour. 
H specifies the dominant pure colour perceived by an observer (e.g., red, yellow, blue) and 
S measures the degree to which that pure colour has been ' diluted' by white light. Because 
colour and intensity are independent, we can manipulate one without affecting the other. 

HSI colour space is described by a cylindrical coordinate system and is commonly rep­
resented as a ' double cone' (Figure 3.10) . A colour is a single point inside or on the surface 
of the double cone. The height of the point corresponds to intensity. If we imagine that 
the point lies in a horizontal plane, we can define a vector in this plane from the axis of the 
cones to the point. Saturation is then the length of this vector and hue is its orientation, 
expressed as an angle in degrees. 
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Figure 3.10 The HSI colour space. 
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A rather complicated geometric transformation maps a colour from ROB space to HSI 
space or vice versa. Gonzalez and Woods [20] give a detailed derivation of the conversion 
fonnulae. Implementations ofthese formulae in C are given by Pitas [37] and by Crane [II]. 
Rather than creating equivalent Java implementations, we can take advantage of conversion 
code built into Java's Color class. The HSICalc application on the CD uses this code to 
convert an ROB colour into an HSI colour. The RO 8 colour is specified on the command 
line as a triplet of8-bit integers; the HSI colour is written to standard output as three numbers 
in the range 0.0- 1.0. Source code for this program is shown in Listing 3.1. 

LISTING 3.1 A program to convert RGB colours into values of hue, saturation and 
intensity. A conversion method from Java's Color class is used. 

import java.awt.Color; 
import java.text .DecimalFormat; 

public class HSICalc { 

public static void main(String[] argv) { 

if (argv.length > 2) { 

int[] rgb = new int[3]; 
for (int i = 0; i < 3; ++i) 

rgb[i] = Integer.parselnt(argv[i]); 

float[] values = Color.RGBtoHSB(rgb[O], rgb[l], rgb[2], null) ; 
String[] labels = { "H=". "S=", "1=" }; 
DecimalFormat floatValue = new DecimalFormat("O,OOO")j 
for (int i = 0; i < 3; ++i) 
System.out.println(labels[i] + floatValue.format(values[i])); 

" } 
2J else { 
n System. err. println( "usage: java HSICalc r g b"); 
n System.exit(l); 

" } 

" 
" } 

" " } 
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3.5 Image representation 

So how do we go about representing a digital image in a Java program? The Java 2 
platform provides a convenient representation for images that makes the implementation of 
image processing software relatively straightforward; nevertheless, it is highly instructive 
to consider first how we might create our own representation in Java, before examining in 
Chapter 4 the solution provided as a standard part of the Java API. We assume here that the 
reader is familiar with Java and with the basic concepts of object-oriented programming; if a 
refresher course is required, the books by Niemeyer and Peck [35], Winder and Roberts [51], 
Eckel [13] and Horstmann [23] are highly recommended. 

3.5.1 8-bit greyscale images 

Usually, a single, quanti sed value is associated with each pixel of an image. It is normal to 
use eight bits for quantisation, in which case the value at each pixel can be stored using one 
byte of memory. The Java language has a byte data type, so a simple way of representing 
such an image in a Java program would be as a two-dimensional array of bytes: 

byte[] [] image = new byte [512] [5 12] ; 

This code creates storage for an 8-bit, 512 x 512 image. Clearly, it would not be possible 
to represent a larger image using this array. Also, a considerable amount of storage space 
would be wasted if the images being processed were much smaller than the array. A better 
solution is to determine the precise storage requirements at run time: 

int width, height; 

II determine appropriate 
II values for width and height 

byte[] [] image = new byte [height] [width]; 

It is interesting to compare this Java code wi th the equivalent code written in another 
language, such as C++: 

int width , height; 

unsigned char** image = new unsigned char* [height]; 
for (int i = 0; i < height; ++i) 

image[i] = new unsigned char [width] ; 

Arrays in C++ lack the necessary flexibility, since their dimensions are fixed at compile 
time. Hence we use a pOinter instead2 . Significantly, the code required to create a pointer 
and allocate two-dimensional storage to it is rather more complex than the equivalent Java 
code. 

C++ does not have a byte data type, but unsigned char can be used instead because a 
character in C++ occupies one byte. Values of this type are interpreted as integers in the 

2 To be more precise, we are using a poinler 10 a pointer. 
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range 0---255 in arithmetic expressions, whereas lava's byte type is treated somewhat less 
conveniently as a value in the range -128 to 127. 

An image class 

In the previous examples, three variables are used to define an image: two integers that 
specify its dimensions and a 2D array of bytes that holds the image data. It can be tiresome 
to juggle all of these variables, particularly in programs that create numerous images. A 
better approach is to define an image class that encapsulates these three attributes. An 
instance of this class-an image object-therefore contains not only the pixel data but also 
variables that store the dimensions of the image. 

An image class should support the notion of information hiding. The image dimensions 
and pixel data should be made private to the image object and access to these variables 
should be possible only by invoking the public methods that form the interface to the class. 
These methods should be implemented in such a way that clients of the class are denied the 
opportunity of putting an image object into an invalid state, e.g., by setting image width to 
zero. 

Separating interface from implementation in this manner encourages the programmer 
using the class to think in terms of the behaviour of an image object, or the services it 
provides to client programs, rather than the details of exactly how the pixel data are stored. 
It has the further advantage that the implementation is fTee to change (e.g., become more 
efficient) without affecting clients of the class, provided that the interface remains the same. 
For example, we might choose to replace the two-dimensional array of bytes used for pixel 
data storage by a one-dimensional array. There are a number of reasons for doing this, not 
least the fact that it simplifies the task of reading image data from or writing image data to 
a file. (Section 3.7 gives further reasons.) 

These considerations lead to a design like that outlined in Figure 3.1 I. This has pri vate 
instance variables to store image width and height, together with public methods getWidth 
and getHeight that simply return the current values of these variables to the client3. There 
is also a pri vate array of bytes, which holds the image data, plus methods getPixel and 
setPixel to retrieve and modify pixel values. Note that getPixel returns an int value, 
although pixel values are represented internally as bytes. Values of type byte in Java are 
taken to lie in the range -128 to 127, whereas we require an integer in the range 0-255. 
The client need never be aware ofthis implementation detail because the getPixelmethod 
performs the conversion. The constructor of the class, which is responsible for creating 
Bytelmage objects, takes parameters wand h, representing the desired width and height of 
the image. 

In a client program, an image is created like so: 

Bytelmage image = new Bytelmage(100, 100); 

A method should, in general, check its parameters, to ensure that an object is not 
put into an invalid state by a client. In some cases, we can rely on the inherent 

3 We follow Sun's JavaBeans convention here. Thus, methods that inspect the stale of an object ha\'e names 
prefixed with 'get'. whereas methods that modify its state in some fashion have names prefixed with 'set'. 
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Bytelmage 

- i nt width 
- i nt hei ght 
- byte [] [] data 

+ Bytelmage(int w, i nt h) 
+ int getWidth() 
+ i nt getHei ght () 
+ int getPixel(int x, i nt y) 
+ void setPixel(int x, in! Y. int value) 

Figure 3.1 I A simple class to represent 8-bit greyscale images. This diagram uses a 
variation of the standard UML notation. The class is represented as a rectangle divided 
into three compartments. The top compartment names the class, the middle compart­
ment lists its instance variables and the bottom compartment lists its methods. A - prefix 
indicates that a variable or method is private; a + prefix indicates that it is public. 

robustness of Java and its tendency to throw exceptions when runtime error con­
ditions occur. For example, when allocating storage for an array of pixels with new, a 
Negati veArraySizeException will be thrown if either dimension has a negative value4. 
Similarly, an ArrayIndexOutOfBoundsException will occur if the array subscripts 
used to access a pixel are out of range. Thus there is no particular need for getPixel or 
setPixel to check that the values of x and yare in the ranges 0 to width-i and 0 to 
height-i, respectively. However, we can implement different behaviour if we wish. For 
instance, setPixel could check that x and yare within the pennitted ranges and simply 
do nothing if this is not the case, rather than throwing an exception. 

The new pixel value passed to setPixel must be checked explicitly. In this case, we 
have three options: 

I. Ignore the value if it is not in the range 0- 255. 

2. Enforce a 0-255 range by treating negative values as 0 and values greater than 255 as 
255. 

3. Throw an exception if the value is out ofrange. 

To implement option 3, we must define our own exception class that extends Exception, 
and modify the definition of setPixel to indicate that the method throws an instance of 
this new exception class. 

The ByteImage class depicted in Figure 3.11 uses a two-dimensional array for the storage 
of pixel values. This means that a pixel at coordinates (x, y) has its value stored in the 
array element data [y] [x] 5. We are free to change this and use a one-dimensional array 

4 Al though no exception is thrown, unfortunately, if either dimension has a value of zero. 
5 We are assuming a 'row-major' ordering of values here; Ihe opposite arrangement would also work, in which 

case a pixel at (x. y) would have its value stored in data [x) [y L 
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of bytes if we wish. For instance, we could define the array as follows: 

private byte[] data; 

The implementations of the constructor, getPixel and setPixel would then have 
to change. A pixel at coordinates (x, y) would now correspond to the array element 
data [y*width+x]. [n effect, y*width represents an offset which identifies the start of 
each row of pixels in the 1 D array. For added efficiency, these offsets could be precalculated 
and stored in another array. This would avoid the need for a multiplication every time a 
pixel was accessed. 

Provided that the interface of the ByteImage class-as defined by the parameters, return 
types and behaviour of its methods- remains the same, client code will be unaffected by 
this change of implementation. 

One reason for making this change is that operations such as copying an image in memory, 
reading it from a stream or writing it to a stream become much easier. Copying of image 
data, for instance, can be accomplished with a single call to the System. arraycopy method 
if the data are in a ID array. Similarly, output of image data to a stream can be implemented 
with a method as simple as this6 : 

public void write(OutputStream out) throws IOException { 
out,write(data); 

} 

Other data types 

Some sources of images, particularly those in the medical field, routinely produce data 
which cannot be represented as 8-bit integers. The pixel values in images from x-ray CT 
scanners in hospitals, for instance, are often represented using 16-bit signed integers, which 
may range in value from -32,768 to 32,767 [50]. Because two bytes are used for each 
pixel, these images require twice the storage space of 8-bit images. In Java, 16-bit integers 
are represented by variables of type short. If 16 bits are not sufficient, we can use the wider 
int type, which has 32 bits and can represent values between approximately -2 x 109 and 
2 x 109 . An image containing an int array will occupy four times as much space in memory 
as an image of the same dimensions in which pixel values are represented with bytes. 

The byte, short and int types allow us to represent a moderate range of values exactly, 
and are sufficient for most imaging applications. On occasion, it may be beneficial to use 
floating-point numbers- which can represent an enormous range of values with a limited, 
albeit useful, precision. Java's float data type supports values as large as 3.4 x 1038 or as 
small as 1.4 x 10-45 , and a still wider range is possible using double. 

Floating-point images are sometimes useful as a means of storing the intennediate results 
of some image processing operation, particularly if it is important that the fractional part 
of a calculation is preserved. Floating-point images may also be used in scientific imaging 
applications, where the exact values measured by an instrument are important and loss of 
precision due to excessive quantisation is undesirable. 

6 We ignore here the need to store image dimensions along with the data. This is considered further in a later 
section. 
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3.5.3 

LISTING 3.2 Program to print limits for the primitive types. The limits are defined as 
static constants in the standard Java 'wrapper classes Byte, Short, Integer, Float and 
Double. 

public class Limits { 
public static void main(String[] argv) { 

java.io.PrintStream s = System.out; 
s .println ( "Min byte value + Byte .MIN3ALUE) ; 
s.println ( "Max byte value + Byte.MAX3ALUE); 
s. println ( "Min short value + Short. MIN_ VALUE) ; 
s.println ( "Max short value + Short.MAX_VALUE); 
s .println("Min int value + Integer . MIN_VALUE) ; 
s.println("Max int value + Integer.MAX3ALUE); 

10 s .println(ItMin float value + Float . MIN_VALUE) ; 
\1 s.println("Max float value + Float.MAX_VALUE); 
" s.println("Min double value + Double.MIN_VALUE); 
13 s.println('lMax double value + Double.MAX_VALUE); 

" } 

" } 

The simple program in Listing 3.2 prints the range of values that can be represented with 
each of Java's primitive types. (This program can be found in the Apps directory on the 
CD.) 

Representation of colour 

A colour image is usually represented using the RGB model (see Section 3.4.1). 24-bit 
quantisation is typical, with 8 bits used for each component. For the purpose of representa­
tion in a computer program, such an image can be regarded as a set ofthree distinct 'planes' 
of data, one for each component. A design based on this notion is shown in Figure 3. 12. 

Alternatively, we can imagine that the image consists of a single array of data, each 
element of the array being a triplet of R, G and B values. Another class is needed to 
represent the RG B triplet. We can devise our own or use Java's Color class from the 
java . awt package. A design which uses this class is shown in Figure 3.13. 

Which approach is best? In the design of Figure 3.12, it is much easier to manipulate the 
red, green and blue components independently as separate images, but retrieving the colour 
ofa single pixel requires three array access operations. In the design of Figure 3.13, pixel 
colour can be retrieved by indexing an array once only, but separate manipulation of the 
different colour components is more difficult to accomplish. 
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RGBlmage 

- i nt width 
- int height 
- byte [] red 
- byte [] green 
- byte [] blue 

+ RGBlmage(int w, i nt h) 
+ i nt getWi dth 0 
+ int getHeight() 
+ void getPixel(int x, i nt y, i nt [] rgb) 
+ void setPixel(int x , i nt y, i nt [] rgb) 

Figure 3.12 A class for RGB images in which the red, green and blue components are 
stored in separate arrays. 

RGBlmage 

- int width 
- int height 

+ RGBlmage(int w, i nt h) 
+ int getWidth() 
+ int getHeight() 
+ Color getPixel(int x, int y) 
+ void setPixelCint x, int y, Color cJ 

1 

1 * 

Color 

Figure 3.13 A class for RGB images that uses an array of Color objects. 



38 Digital images 

3.6 Volumetric data 

Although images are two-dimensional, there are instances where three-dimensional data are 
acquired. [n x·ray CT imaging, for example (Section 2.4), a 'stack ' of images representing 
paraJlel slices through the body are obtained. Other techniques which provide 3 D data 
include nuclear magnetic resonance imaging and confocal microscopy. In each case, the 
images are slices through a third, spatial dimension. Video data can likewise be regarded 
as three-dimensional, although the third dimension is, in this case, time. 

Here, we use the term volume to describe a 3D dataset. We wiJl further assume that the 
third dimension is spatial. Each element of a sampled volume is termed a voxel (by analogy 
with pixel). The structure ofa volumetric dataset is shown in Figure 3.14. 
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Figure 3.14 A volumetric dataset can be viewed as a 3D array of voxels. 

Our previous definition of an image class can be extended in a straightforward manner to 
accommodate a third spatial dimension, giving us the design in Figure 3.1 5. A 3D array of 
bytes is used here, but we could equally use any of the other primitive numeric data types 
provided by Java. We could also use a ID array for storage, as explained earlier-in which 
case each voxel is addressed as 

data[sliceSize*z + width*y + x] 

where sliceSize = width*height. Again, we can use the approach of storing precom­
puted offsets for each slice and each row within a slice in order to minimise the number of 
multiplications that must be done to access a Yoxel. 
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ByteVolume 

- ; nt wi dth 
- i nt he; ght 
- int depth 
- byte [] [] [] data 

+ ByteVolume(int w, int h, int d) 
+ ; nt getWi dthO 
+ i nt getHei ght 0 
+ i nt getDepth () 
+ int getVoxelCint x, int y, int z) 
+ void setVoxel(int x, int y, i nt z, int value) 

Figure 3.15 Structure of a simple volume class. 

3.7 Object-oriented programming with images and volumes 

Although we tend to regard images and volumes as distinctly different entities, at some 
fundamental level they are both represented using an array of data. There are certain 
operations for which the organisation of data in this array is irrelevant. Consider, for 
example, the task of calculating the mean of all the samples in the dataset. For an image, 
this involves iterating over all pixels, summing the values, and then dividing by the number 
of pixels; for a volume, we must iterate over all voxels, sum the values and then divide by the 
number ofvoxels. Ifwe have implemented our image and volume classes using 2D and 3D 
arrays, respectively, then the iteration process differs, so different pieces of code are required 
for what are, essentially, identical tasks. However, if we have implemented storage for both 
images and volumes using a ID array, then identical pieces of code perform the calculation. 

Obviously, it is wasteful to have identical pieces of code in two separate classes. Instead, 
we can share this code between our image and volume classes by means of inheritance. 
For example, we can define a base class containing the array of data and then derive image 
and volume classes from it. The base class represents an abstract view of the data as a mere 
sequence of samples, and the derived classes impose a particular spatial interpretation on 
the dataset. The base class can have methods which do not depend on the interpretation 
of values in the array-such as a method to compute mean sample value, This method is 
inherited by, and is therefore available to, both the image class and the volume class. The 
relationship between the three classes is depicted in Figure 3.16. 

Now let us consider the issue of other data types. The design in Figure 3.16 supports 
only 8-bit data, but we have seen that it is sometimes necessary to use wider integer types or 
floating point types to represent pixel and voxel values. In C++, this need could be accom­
modated easily by using templates for the array, image and volume classes of Figure 3.16. 
Unfortunately, Java lacks this feature, so it is necessary to create separate classes for each 
data type. Figure 3. I 7 shows how these classes can be implemented using inheritance. (We 
show only classes used for image representation here, although the discussion below applies 
equally to volumetric data.) 
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BaseArray 

~ int size 
- byte[J data 

+ BaseArray (int n) 
+ int getSizeO 
+ int getElement(int i) 
+ void setElement(int ;, int value) 
+ double getMeanvalueO 

£~ 

I I 
Bytelmage ByteVolume 

- int width - int width 
- int: height - int height 

- int depth 
+ Bytelmage(int w, int h) 
+ int getWidthO + ByteVolumeCint w, i nt h, i nt: d) 
+ int getHeightO + int get:Wi dthO 
+ int: getPixel(int x, int: y) + in t getHeight O 
+ void setPixel(int x, int y, int value) + int getOepthO 

+ int get:Voxe1(int X, int y, in t z) 
+ voi d setVoxel(int x, int y, ;nt 2, int value) 

Figure 3.16 Inheritance hierarchy for simple a-bit image and volume classes. 
BaseArray is responsible for image storage and for providing sequential access to data; 
Bytelmage imposes a 20 interpretation on the data sequence and provides appropriate 
methods to access pixels by 20 indexing; ByteVolume imposes a 3D interpretation on 
the data and provides methods to access voxels via 3D indexing. 

The main change from the design of Figure 3.16 is that the class BaseArray and the 
image class derived from it are now abstract classes. It is not possible to create instances of 
BaseArray or Baselmage in a program; however, a program may create instances ofa con­
crete (i.e., non-abstract) class derived from Baselmage and subsequently manipulate that 
object using references to a BaseArray or a Baselmage. We would work with Baselmage 
if we required our code to function with any image, regardless of pixel data type; we would 
work with BaseArray if our code had to work with both images and volumes. 

The BaseArray class of Figure 3.17 contains no data. It stores the size of (i .e., number of 
samples in) the dataset, and contains abstract methods get Element () and setElement () 
to retrieve and modify an array element. The implementations of these methods appear 
in the derived class that actually contains the pixel/voxel data. The methods use double 
values, allowing for the possibility that the pixel/voxel data type could be anything from 
byte up to double. The getMeanValue () method, implemented here because calculation 
ofthe mean sample value does not require knowledge of the spatial organisation of the data, 
uses the getElement 0 method to obtain sample values, which are summed in order to 
compute a mean value. 

The Baselmage class represents a lower level of abstraction, imposing a 2D interpretation 
on the data. Concrete methods exist to inspect image width and height, and there are abstract 
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8aseArray 
{abstract} 

- int size 

+ BaseArray(; nt n) 
+ i nt getSizeO 
+ doub7e gerElemen t (in t iJ 
+ void setE7ement(int i, doub7e va7ue) 
+ double getMeanValue() 

l .1 

8aselmage 
{abstract} 

- ; nt wi dth 
- int height 

+ Baselmage(int 1'1 , ; nt h) 
+ int getWidth() 
+ int getHeight() 
+ doub7e getPixe7 (int x, int y) 
+ void setPixe7(int X, int y, doub7e va 7ue) 

L .1 

I I 
8ytelmage IntImage 

- byte[] data - ; nt [] data 

+ Bytelmage(int w, ; nt h) + Intlmage (int w, int h) 

Figure 3.17 An inheritance hierarchy for images with different pixel data types. Italics 
signify an abstract method, for which an implementation must be provided by a derived 
class. 

methods getPixel () and setPixel () which retrieve or modify the value of a pixel that 
is indexed by its x and y coordinates. 

Concrete image classes are derived from BaseImage. For each pixel data type, we have 
a separate class. Figure 3.17 shows only the ByteImage and IntImage types, suitable 
for representing 8·bit and 32-bit integer-valued images. These concrete classes contain the 
arrays that store pixel data. They also contain implementations of the abstract data access 
methods declared in BaseArray and BaseImage. Note that these methods have to return or 
accept double values, despite the fact that the concrete classes shown in the diagram store 
byte and int data. The implementations of getElement () , setElement () , getPixel () 
and setPixel 0 can use casts to convert between double and byte or double and into 
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" 

LISTING 3.3 Example of polymorphism. 

public class Mean { 

public static void printl(ByteImage image) { 
System.out.println(lImean value is " + image.getMeanValue(»)j 

} 

public static void print2(Baselmage image) { 
System.out.println("mean value is It + image.getMeanValueO); 

} 

II public static void print3CBaseArray array) { 
12 System. out. println ("mean value is " + array. getMeanValue () ; 

" } 

" " } 

Although this approach may seem rather complex, its advantages soon become apparent 
when we consider a simple example. The class Mean in Listing 3.3 contains three static 
methods, each of which can be used to compute the mean of an image and prim the resulting 
value on the console. The method printl () can be invoked only on ByteImage objects. 
The method print2 () takes a BaseImage parameter, so it can bc invoked on objects of 
type ByteImage, IntImage, FloatImage, etc. The method print3 () takes a BaseArray 
parameter, making it completely general. We can pass allY image object to it, or, indeed, 
any volume object; methods printl () and print2() are therefore superfluous. 

Note that print3 () will function correctly even with instances of image or vol­
ume classes that haven '{ yet been implemented- provided that such classes are derived 
from Baselmage or the equivalent BaseVolume class and that they implement the 
getElement 0 method declared as abstract in BaseArray. It is not necessary for the 
Mean class to be recompiled. This is an example of polymorphism at work. The concept 
of polymorphism is central to object-oriented programming, and it is exploited frequently 
in the Java API. 

3.8 Further reading 

Our discussion of sampling and quantisation is fairly qualitative. Sampling is dealt with 
much more rigorously by Castleman [9], who devotes an entire chapter to the subject. 
Useful discussion may also be found in the books by Gonzalez and Woods [20], Gomes and 
Velho [19], and Glassner [17]. 

A fairly simplistic view of colour is presented here; a far more thorough treatment is given 
in books by Gomes and Velho [19] and by Glassner [17]. One important colour model that 
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we have not mentioned is the Y CbC,. model. This is an internationally-recognised standard 
for digital video, and is the colour model used by the JPEG and MPEG image and video 
compression techniques discussed in Chapter 12. In this model, Y, known as the luminance 
component, contains all of the intensity information. Colour is represented by the two 
colour difference components, Cb and Cr. Since intensity is more significant, perceptually, 
than colour, Cb and C, can be quanti sed using fewer bits than Y. 

There are many ways of representing images in computer memory. Lyon [29] presents 
some Java image classes rather different from those described in this chapter. Other texts [25, 
37,48, for example] generally give examples written in C, but it can be instructive to compare 
these with Java implementations. 

This chapter illustrates how basic object-oriented concepts are useful in developing soft­
ware to support image processing. Deeper insights into object-oriented techniques using 
Java can be gained from the books by Eckel [13] and Horstmarm [23]. 

The class diagrams in this chapter follow Unified Modelling Language (UML) conven­
tions. UML is emerging as the industry-standard notation for describing object-oriented 
designs. An accessible introduction to UML and software engineering in general is given 
by Pooley and Stevens [38]. The book by Alhir [I] is more ofa reference manuaL 

3.9 Exercises 

L Using the ResolutionSimulator application on the CD, investigate the relationship 
between spatial resolution and our ability to recognise image content. Faces are a 
particularly good choice of image for this type of experiment. Use an image of a well­
known person and start with the lowest resolution, increasing resolution until you can 
recognise the person. (The fact that you already know the identity of the person may 
influence the results; to avoid any bias, try the experiment on some friends who have not 
seen the image at full resolution.) 

2. An outdoor scene contains a fence consisting of fence posts 6 em across, spaced 6 em 
apart. A camera observing the scene captures a 30 m length of this fence within its 
field of view. Output from the camera is sampled to give 256 x 256 images. What 
kinds of artefacts might we see in these images? Perform some calculations to support 
your argument and to determine the conditions under which these artefacts will not be 
present. 

3. Run the LogPolar application on the CD and verify that a scale change merely translates 
an image along the r axis. 

4. Using the QuantisationSimulator application on the CD, investigate the relationship 
between image content and the number of bits required to quantise an image adequately. 

5. Implement the Bytelmage class of Figure 3.11 and write a suitable driver program to 
test that Bytelmage objects behave correctly. 

6. Why does Bytelmage not provide methods setWidth and setHeight ? 

7. Improve Bytelmage by defining additional instance variables and methods that would 
be useful in a simple image class. 
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8. Compare the image classes described in this chapter with data structures for image 
representation in other programming languages, such as C [25, 37, 48]. What are the 
advantages of using Java instead of these other languages? What benefits does the object­
oriented approach convey? In what ways are these other implementations superior to 
the Java implementation presented here? 
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This chapter describes how images are represented in Java programs. We examine the 
classes that have been available to represent and manipulate images since version 
1. a of the language and compare them with the newer and more powerful classes 
introduced into the language via the Java2D API. These classes are used extensively 
in the Java programs presented in subsequent chapters. We also consider briefly the 
Java Advanced Imaging APL an optional extension to the language that supports 
more advanced modes of operation. 

4.1 Images in Java 1.0/1.1 

Older versions of Java (1.0 and 1.1) supported image manipulation via the Image class' and 
a small number of related classes. The Image class is part ofthe java. awt package, and its 
helpers are part of java. awt. image. Although the Image class remains useful, it suffers 
from some limitations that hinder the implementation of conventional image processing 
programs. 

4.1.1 Loading images 

The limitations of Image first become apparent when we attempt to load image data into a 
program. This is accomplished by the getImage () method, which is directly available to 
Java applets. The method takes a URL specifying the location of the image as its parameter. 
Applications can obtain a java. awt. Toolki t object and call its get Image () method: 

Image i mage = Toolkit .getDefaultToolkit () .getImage(file); 

I Note that Image is an abstract class; when you manipulate an Image object, you are actually working with an 
instance of a platform-specific subclass. 

45 
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Toolki t has a version of getImage 0 that loads an image from a local file, as shown 
above, and another version that loads an image from a URL. 

On all platforms, get Image 0 can be guaranteed to understand the file formats used 
for GIF and JPEG images. A number of Java implementations also provide support for 
the XBM image format that is used on X Windows platforms. It is possible (although not 
trivial) to create and install a 'content handler' class for some other image format [35], 
thereby allowing get Image 0 to handle that new format; alternatively, we can create a 
class that handles image loading itself, rather than relying on get Image (). One way of 
doing this is to implement the ImageProducer interface described in Section 4.1.2. 

The use of URLs by get Image () reflects lava's 'network-centric' perspective. Java 
programs, be they applets or applications, are able to load image data from remote sites on 
the internet. But what happens if there is a slow connection to a remote site? Java solves 
this problem by loading images asynchronously, in a separate thread. This leaves the applet 
or application free to perform other tasks-such as creating and displaying a graphical user 
interface or handling user interaction of some kind-whilst waiting for delivery of image 
data to be completed. 

A call to getImage 0 returns immediately; it sets up image loading but does not load 
any image data itself. Image retrieval is initiated when we call a method that requires image 
data. For applets or graphical applications, this is usually the drawlmage () method, used to 
display the image on a component of some kind. The prepare Image () method can also be 
used trigger image data retrieval. Both of these methods take as one of their parameters an 
object implementing the ImageObserver interface. An ImageObserver object provides 
a method called imageUpdate () that will be called from the thread carrying out image 
loading whenever new information about the image becomes available. The Component 
class of Java's Abstract Windowing Toolkit (AWT)--from which all GUI components are 
derived- implements the ImageObserver interface, so objects such as Applet, Button, 
Canvas, etc, can monitor image loading and act appropriately when an image has been 
fully loaded. 

Although clearly advantageous in some respects, asynchronous image loading makes the 
implementation of a straightforward, console-based (i.e., non-graphical) image processing 
program more complicated than usual. This is because we must somehow guarantee that 
image loading has completed before attempting to process the image. We could do this 
by implementing ImageObserver and supplying an imageUpdate () method that initiates 
processing once loading has completed; however, a more convenient approach may be to 
use a MediaTracker. This class forces image loading to begin and provides methods to 
check the status of an image or simply wait until loading of that image has fini shed. 

Listing 4.1 shows howMediaTracker can be used to fake synchronous image loading in a 
console-based application. The class listed here implements a method called readlrnage 0 
that returns a fully-loaded Image object (assuming that there were no problems with access­
ing or reading from the image file). Line 6 sets up loading of data from the specified file into 
image. Line 7 creates the MediaTracker that will monitor loading ofthe image data. Note 
that a MediaTracker must be constructed with a Component as a parameter. In applets or 
GUI-based applications, this presents no problems, since there is always a Component of 
some kind available. In a console-based application, there is no Component available, but 

'. we must still create one for the MediaTracker to use. Of course, Component itself cannot 
be instantiated, being an abstract class. We could simply create an instance of Canvas, 
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LISTING 4.1 Synchronous loading of image data into an Image object. 

import java.awt.*i 

public class ImageTest { 

public static Image readlmage(String file) { 
Image image = Toolkit.getDefaultToolkit().getImage(file); 
MediaTracker tracker = new MediaTracker(new Component() {})j 

tracker.addImage(image, 0); 
try { tracker.waitForID(O); } 

10 catch (InterruptedException e) {} 
II return image; 

" } 

" 
14 public static void main(String [] argv) { 
" if (argv.length > 0) { 
" Image image = readImage(argv[O]); 
17 / / do something with image ... 

" } 
" } 

" } 

Button or any other AWT component and pass this to MediaTracker's constructor, but 
a neater and more satisfactory approach is to create an instance of an anonymous inner 
subclass of Component2 This is done with 

new Component() {} 

which is shorthand for 

class TemporaryComponent extends Component {} 
new TemporaryComponent(); 

Line 8 of Listing 4.1 registers image with tracker and initiates loading. The second 
parameter of the call to addImage () is a numerical identifier for the image. Lines 9 and 10 
block until the image with the specified identifier has loadedoran InterruptedException 
is thrown. At line II , the image should, barring any errors, have been loaded completely, 
so a reference to it can be safely returned to the caller of readImage () . 

Producers and consumers 

Image handling in Java 1.0/1.1 is driven by the availability of image data. This is some­
times described as the 'push model' of image processing. Java supports this model by 

2 If you are unfamiliar with the concept of inner classes, Eckel [13] provides a thorough explanation. 
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means of the producer-consumer paradigm (Figure 4.1). Classes that handle images can 
operate as producers or consumers of image data, implementing the ImageProducer or 
ImageConsumer interfaces as appropriate. An image producer can generate pixel values 
itself or acquire pixels from some external source (e.g., from a file with a format that is 
not supported by getImage ()). Its job is to forward the pixel data to one or more con­
sumers. The consumers register their interest in an image with the producer and, as image 
data become available, the producer calls methods of those consumers to transfer the data 
to them. Image consumers work behind the scenes to facilitate the display of images on 
AWT components such as Canvas. Other examples of image consumers are considered in 
Section 4.1.3. 

ImageProducer ::> ImageConsumer 

---- - - - - - -------- ------------------ .-. 

<> ImageFi 1 ter , 

FilteredlmageSource ~ ----;---J..-/ ImageConsumer 

: 

Figure 4.1 Java's producer-consumer model for image handling. 

At its simplest, the producer-consumer paradigm has a single producer feeding pixels 
to a single consumer. The former will typically obtain pixel data from an input stream or 
from memory and the latter will normally display those pixels on an AWT component of 
some kind. We can think of pixel data flowing along a pipeline from producer to consumer. 
To process the image, we can interrupt this pipeline, inserting an operation tbat modifies 
pixel values in some way. To fit in with the producer-consumer paradigm, this operation 
must consist of an image consumer to acquire the pixel data and an image producer to 
pass the processed data on to the original consumer. Java provides the ImageFil ter and 
Fil teredlmageSource classes to fulfil these roles (see Section 4.1.3). 

An example of an image producer is MemorylmageSource. This class produces pixels 
from data in a user-specified array. That array could be filled with data generated by 
a program, or it could contain data read from a file that has a format unsupported by 
Java3. Arrays of rype byte or int can be used. The abstract class ColorModel specifies 

3 Actually, in the latter case, a better approach is to implement a special image producer to handle other formats. 
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how values in the array are to be interpreted. We must create an instance of a concrete 
subclass of ColorModel and pass it to the MemorylmageSource constructor along with 
the array of pixel data, The AWT provides two concrete subclasses: IndexColorModel 
and DirectColorModel, The former can be used to specifY a greyscale and the latter is 
used to specifY RGB colour, 

For example, let us suppose that we wish to create a greyscale image 320 pixels wide and 
200 pixels high from an array of bytes called data, The first step is to create the appropriate 
IndexColorModel, using 

byte[] grey = new byte [256] ; 
for (int i = 0; i < 256; ++i) 

grey[i] = (byte) i; 
ColorModel greyModel = 

new IndexColorModel(8, 256, grey, grey, grey); 

IndexColorModel expects three arrays, specifying the values of red, green and blue as­
sociated with each index, By definition, the values of red, green and blue are equal for all 
indices in greyscale images, so only one array needs to be created. 

The next step is to create a MemorylmageSource object to act as producer of pixel data. 
The Image object can then be created from this producer by means of the create Image () 
method: 

ImageProducer producer = 
new MemoryImageSource(320, 200, greyModel, data, 0, 320); 

Image image = Toolkit.getDefaultToolkit().createImage(producer); 

This example assumes a non-graphical application. If the code was featuring in an applet, 
the createImage () method of that applet could be used instead of using a Toolkit. The 
array data is a one-dimensional array of type byte, A left-to-right, top-to-bottom ordering 
of pixel values is assumed. The last two parameters passed to the MemorylmageSource 
constructor require some explanation. The first is the index of the first image pixel in the 
array. This is usually 0; it might be a value other than 0 if a single array is used to hold 
pixel data for more than one image. The second and final parameter is the amount of space 
in the array that is devoted to a single row of image pixels. This is usually the same as 
the width of the image, although it can be larger (in which case the extra bytes are skipped 
when moving from one row to the next). 

Now let us suppose that the image is an RGB colour image, This is slightly simpler to 
deal with. Although we could create an instance of DirectColorModel to specify that 
pixel values are RGB colours, this is not strictly necessary, as the default ColorModel for 
images is an RGB model. Hence, we can create the Image object as follows: 

ImageProducer producer = 
new MemoryImageSource(320, 200, data, 0, 320); 

Image image = Toolkit.getDefaultToolkit(),createImage(producer); 

If a MemorylmageSource is used as the producer, the ability to display or manipulate portions of the image as 
data become available is lost [55]. 
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4.1.3 

The main difference between this code and the previous example for a greyscale image, 
aside from the absence of an explicit ColorModel. is the fact that data is now a one­
dimensional array of into One integer from this array is associated with each pixel. This 
integer is 32 bits wide, so it has the capacity to hold the 8-bit red, green and blue components 
of a pixel's value. The remaining 8 bits are used for the alpha component, which represents 
pixel transparency. The ordering of red, green, blue and alpha is shown in Figure 4.2. 

24 16 8 0 

i nt I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 
alpha red green blue 

Figure 4.2 Red, green, blue and alpha values packed into a single integer. 

Acquiring and processing pixel data 

The PixelGrabber class 

Having created an Image object, how do we access its pixels? The ByteImage class 
described in Chapter 3 had methods getPixelO and setPixelO for this purpose, but 
Image has nothing resembling these. This is a frustrating but necessary restriction, given 
that images are loaded asynchronously and there are no guarantees that an Image object 
has any data associated with it. 

Of course, ifthe producer of pixels for this image is a MemorylmageSource and we have 
retained a reference to the array containing the pixel data, then we can inspect or modify a 
pixel's value simply by accessing the appropriate element ofthe array. But what if the image 
was created by a call to getImage O? In that case, the only way of accessing pixels is to 
follow the producer-consumer paradigm and use an image consumer. Fortunately, we don't 
have to implement this ourselves, as Java has a class called Pixel Grabber to perform this 
task. Pixel Grabber can acquire pixel data synchronously or asynchronously. It can store 
pixel values in a user-specified array or create a suitable array itself. For details of all the 
various ways in which a PixelGrabber can be used, see the Java AWT Reference [55] or 
a similar text; here, we give just one example to illustrate how a PixelGrabber might be 
used in a console-based application. 

Listing 4.2 shows a Java application that uses getImage () to read an image and 
PixelGrabber to retrieve its pixel values. Line 9 creates the PixelGrabber object. The 
parameter passed to the constructor are: the Image object from which data are required; 
the x and y coordinates of the upper-left corner of the block of pixels to be grabbed; the 
width and height of the block to be grabbed; and a Boolean flag to indicate whether the 
Pixel Grabber should force the use of an RGB colour model for the grabbed data. In this 
case, we are grabbing the entire image, so 0 is used for the x and y coordinates. Width 
and height are not yet known because image data are loaded asynchronously, but we are 
allowed to specify -1 for both dimensions, signifying that the width and height of the 
image should be used, once they have been determined. The final parameter is false, 
indicating that we will let the PixelGrabber decide how to interpret the grabbed data. In 
line 10, a call to the grabPixels () method acquires the data. This method blocks until the 
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LISTING 4.2 Example of how PixelGrabber may be used to acquire pixel data from 
an Image object. 

import java.awt.*; 
import java,awt.image.PixelGrabber; 

public class ImageTest { 

public static void processlmage(String infile, String outfile) { 
Image image = Toolkit.getDefaultToolkit().getlmageCinfile); 
try { 

" 
II 

" 
" 

" ,. 

PixelGrabber grabber = new PixelGrabber(image, 0, 0, -1, -1, false); 
if (grabber.grabPixels(» { 

int width = grabber.getWidth(); 
int height = grabber.getHeight(); 
if (bytesAvailable(grabber» { 

} 

byte[] data = (byte[]) grabber getPixels(); 
II process greyscale image .. , 

17 else { 
18 int[] data = (int[]) grabber.getPixelsO; 
19 / I process colour image ... 
20 } 

" } 

" } 
n catch (InterruptedException e) { 
24 e. printStackTrace () ; 

" } 
26 } 

" 
28 public static final boolean bytesAvailable(PixelGrabber pg) { 
29 return pg.getPixelsO instanceof byte[]; 

'" } 

" 
l2 public static void main(String[] argv) { 
l) if (argv.length > 1) { 
34 processlmage (argv [0], argv [1]) ; 
H System.exit(O); 

" } 
37 else { 
38 System.err.println("usage: java ImageTest <infile> <outfile>"); 
39 System. exi t (1) ; 

'" } 

" } 

" } 
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data have been acquired, returning true if acquisition was successful and false otherwise. 
An InterruptedException can also be thrown if another thread interrupts acquisition. 

In this example, the PixelGrabber itself is responsible for allocating storage space 
for the pixel data. To obtain a handle on this storage we must call the Pixel Grabber's 
getPixels 0 method. The returned array will be of type byte [] if the image has an 
IndexColorModel (which could mean that it is a greyscale image). The array will be of 
type int [J if the image has a DirectColorModel (indicating that it is an RGB colour 
image). Actually, getPixelsO returns an Object, but we can use Java's instanceof 
operator to check whether this is, in fact, an array of bytes (line 27). If so, we can cast it 
to byte [] and assign the result to a byte [J variable (line 14); otherwise, we must cast 
the returned object to int [] and assign it to an int [] variable (line 18). In the former 
case, pixel grey levels are simply the values stored in the array; in the latter case, the red, 
green and blue components of a pixel's value are packed into a single integer and must be 
retrieved using bitmasks. We can do this ourselves, using 

int red ~ data[i] & OxffOOOO; 
int gr een ~ data[i] & OxffOO; 
int blue ~ data[i] & Oxff; 

but this assumes that these bitmasks describe how red, green and blue values have been 
packed into integers. In practice, this is highly likely to be the case, but it might not be 
true- so a better approach may be to ask the Pixel Grabber for the ColorModel of the 
image and use methods of the ColorModel to unpack red, green and blue values: 

ColorModel model ~ grabber.getColorModel(); 
int red ~ model.getRed(data[i]); 
int green ~ model.getGreen(data[i]); 
int blue ~ model.getBlue(data[i]); 

The I mageFi l t e r class 

We now know enough to carry out image processing operations on Image objects 
in Java LOl l.!; we can load the image via getImageO, get the pixel data with 
PixelGrabber, modify the array of pixels as required and convert them back into 
an Image using MemorylmageSource. A more elegant variation of this approach is to use 
the ImageFilter and FilteredlmageSource classes in the java. awt. image package. 
An ImageFil ter object specifies what happens to pixel values. To process an image with 
this ImageFil ter, we must create an instance of Fil teredlmageSource, passing the 
image's producer and the ImageFilter in as parameters. The FilteredImageSource 
acts as the producer for the processed pixels and can be used to create a new Image object: 

Toolkit toolkit ~ Toolkit.getDefaultToolkit(); 
Image image = toolkit.getlmage(filename)j 
ImageFilter filter = new ImageFilter(); 
FilteredImageSource newSource = 

new FilteredlmageSource(image.getSource(), filter)j 
Image newlmage = toolkit . createlmage(newSource); 
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This example uses ImageFil ter, which simply forwards image data without modifying 
pixel values in any way. To do anything useful, we must use one of the subclasses of 
ImageFil ter supplied with Java or implement our own subclass. Table 4.1 lists the filter 
classes provided with Java version 1.1 onwards and Figure 4.3 shows the relationships 
between these classes. Further information on using these classes can be found in many 
Java books [35, 55, for example], so we shall not discuss them further here. 

Table 4.1 ImageFil ter classes provided for image processing in Java 1.1. 

Class Description 

ImageFil ter 'Null' filter; has no effect on images. 

RGBlmageFil tar Abstract base class for filter classes that modify pixel values. 

CroplmageFil ter Crops the image to the specified rectangular region. 

ReplicateScaleFilter Scales an image by duplicating or removing rows and columns 
of pixels. 

AreaAveragingScaleFil tar Scales an image with anti-aliasing. 

RGBImageFi 1 ter 
{abstract"} CroplmageFi 1 'ter Rep' i cateSca 1 eFi 1 ter 

I 

Figure 4.3 Relationship between the various ImageFil ter classes available in the 
java. awt . image package. 

4.2 The Java2D API 

The producer-consumer approach is conceptually sound but rather clumsy for straightfor­
ward image processing applications in which we can guarantee the availability of image 
data-when the image is loaded from a local disk, for example. In these cases, an image 
class similar to the ByteImage class described in Chapter 3 is more suitable. This defi­
ciency has been addressed with the introduction of the Java2D Application Programming 
Interface (API) into Java. With the release o[Java 2, Java2D has become one ofthe standard 
APIs provided with the language. 

The Java2D API consists of a number of classes, distributed amongst the old packages 
java. awt and java. awt. image and six new packages: java. awt . color, java. awt. 
font, java. awt .geom, java.awt .print, java. awt. image . renderable and com. 
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sun. image. codec. jpeg. The classes enhance significantly Java's 2D graphics capa­
bilities relative to what was possible in earlier versions of the language. Many of the new 
classes support operations that are of limited relevance to images and image processing. 
We ignore those classes here and concentrate on the classes used for image represen­
tation: Bufferedlmage, ColorModel, Raster, SampleModel, DataBuffer and their 
subclasses. The reader interested in the broader capabilities of Java2D should consult 
Knudsen 's Java 2D Graphics [27] for more information. 

Note that the new features of Java2D augment, rather than replace, the image handling 
classes of Java 1.011.1. (This is one reason why we dwelled so long on these classes in 
Section 4.1.) 

4_2_1 The Bu££eredlmage class 

The BufferedImage class is provided specifically to support what Sun describe as ' imme­
diate mode', i.e ., a mode of operation in which pixel values are known to be in memory, 
allowing operations to be performed immediately without the need to wai t for the delivery 
of image data. With this mode of operation, it is possible for an image class to have meth­
ods that access individual pixel values, making the implementation of image processing 
software a lot more straightforward. Note that BufferedImage is a subclass ofImage; we 
are therefore free to substitute BufferedImage for Image wherever the latter is used. 

A BufferedImage object has the structure shown in Figure 4.4. It consists of a 
ColorModel and a Raster. The Raster holds the image data. Every pixel in the 
Raster has one or more samples associated with it. The ColorModel specifies how these 
samples are interpreted. The number of colour components specified by the ColorModel 
must match the number of samples per pixel provided by the Raster. There are three 
concrete subclasses of ColorModel that specify different interpretations of pixel data. 

Bufferedlmage 

~. ~ 

ColorModel 

Raster 

~ 

SampleModel 

DataBuffer 

Figure 4-4 Composition of a BufferedImage object. 
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Table 4.2 Selected types of Buff eredImage. 

Constant Description 

TYPE_BYIE_BINARY I-bit sample for each pixel; 8 samples packed into a byte. 
TYPE_BYTE_GRAY 8-bit sample for each pixel, stored in a byte. 
TYPE_USHORT _GRAY 16-bit sample for each pixeL stored in a short. 

TYPE_3BYTE_BGR 8-bit blue, green and red samples, each stored in onc byte. 

TYPE_INT_RG8 8-bit red green and blue samples, packed into an into 

DirectColorModel and IndexColorModel were available in Java l.O/ Li and have al­
ready been discussed (Section 4.1.2). Java2D introduces a third subclass of ColorModel, 
called ComponentColorModel. This supports representations in which a pixel's samples 
correspond directly to the components of the colour model. 

The Raster of a Bufferedlmage can be further decomposed into a DataBuffer and 
a SampleModel. The DataBuffer is simply a wrapper for the array or arrays used to 
store pixel data. The SampleModel specifies how the array elements managcd by the 
DataBuffer are translated into the samples of a particular pixeL 

The constructor of Bufferedlmage takes image dimensions and image type as its pa­
rameters. Image type is specified by an integer constant defined in the Buff eredImage 
class. There are thirteen different standard types, representing different combinations of 
ColorModel and SampleModel. Table 4.2 lists a selection of these standard types. (The 
others are described in detail by Knudsen [27].) The most useful types for our purposes are 
TYPE_BYTE_ GRAY and TYPE_3BYTE_BGR, representing greyscale and colour images, re­
spectively. Both of these types use a ComponentColorNodel, there being one component 
in the case of greyscale images and three in the case of colour images. TYPE_BYTE_BINARY 
is also useful for binary imagcs (see Chapters 5, 10 and II), which consist only of black 
and white. Samples for this imagc type can have the values 0 or l. A single bit is used to 
represent each sample. 

The dimensions and type of an existing Bufferedlmage object can be queried using 
the methods getWidthO, getHeightO and getTypeO. Its ColorModel can be re­
trieved with getColorModel O. Pixel values can be inspected or modified by means of 
the methods getRGB 0 and setRGB O. These methods are overloaded so that they can 
be used to manipulate single pixels or rcctangular blocks of pixels (Table 4.3). Note that 
getRGB 0 and setRGB 0 represent each pixel's value as an integer, into which alpha, red, 
green and blue components arc packed as illustrated in Figure 4.2. Packing is done re-

Table 4.3 Methods getRGBO and setRGBO provided by the BufferedImage class. 

int getRGB(int x, int y) 

int[] getRGB(int x, int y, int w, int h, int[] data, int offset, int 

scansize ) 

void setRGB(int x, int y, int value) 

void setRGB(int x, int y, int w, int h, int[] data, int offset, int 

scansize) 
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4,2.2 

gardless of the underlying representation used for pixel values. This is inefficient when 
the image has a ComponentColorModel. Suppose, for example. that we have an image of 
type TYPE_3BYTLBGR, which stores red, green and blue in separate array elements. The 
getRGB () method gives us these three components packed into an integer. To process a 
pixel, we must extract red, green and blue values from this integer. When we have finished, 
we must pack the processed values into another integer and pass this integer to setRGB (), 
which promptly extracts red, green and blue values and stores them in the appropriate 
elements of the array(s) used for data storage. 

Confusion and inefficiency can also arise when using getRGB () and setRGB () on 
greyscale images. For example, suppose that we have an image of type TYPE_BYTE_GRAY, 
and that a particular pixel in that image has a grey level of 50. The value returned by 
getRGB () for that pixel is -13487566! The explanation for this seemingly bizarre result 
becomes clear if we look at the binary representation of this number and compare it with 
Figure 4.2: 

I 1l11l111 I 00110010 I 00110010 I 00110010 I 
" = 255 R - 50 G = 50 B = 50 

A value of - 13487566 corresponds to an alpha of 255 (signifying an opaque pixel) and 
red, green and blue values of 50-which was the grey level stored in the image. This makes 
sense because, when the red, green and blue components of a colour are equal in magnitude, 
that colour is seen as a shade of grey. Nevertheless, it is still frustrating that an unnecessary 
conversion of a grey level into a colour has been done. 

Now suppose that we wish to modify the grey level oflhat pixel, changing it to 100. To 
do this with setRGB (), we must assume that red, green and blue are all equal to 100 and 
pack these identical values into an integer, as indicated in Figure 4.2. This can be done by 
judicious use of the left shift and logical OR operators, but it would clearly be a lot easier 
if we could manipulate pixel grey level directly. 

Because of these problems, it is generally more convenient to manipulate pixel values at 
a lower level, using methods of the underlying Raster object. 

Raster and WritableRaster 

Java20's Raster class contains methods that manipulate the samples of a pixel directly, 
without the potentially wasteful interpretation imposed by a ColorModel. Note that Raster 
is a read-only class; its methods can be used to inspect pixel values but not to modify them. 
A subclass of Raster, called WritableRaster, adds methods that change a pixel's value. 

The pixel access methods of Raster and WritableRaster fall into two broad classes: 
pixel methods and sample methods. The basic pixel methods are getPixelO and 
setPixel (). These operate on arrays of int, float or double representing the set of 
samples associated with a single pixel. Also available are methods getPixels () and 
setPixels (), which operate on a rectangular block of pixels specified by upper· left 
corner coordinates, width and height. The basic sample methods are getSample () and 
setSample O. These operate on a specified sample fi'om a single pixel. Also available are 
getSamples () and setSamples (), which operate on a particular sample of each pixel 
in a rectangular block specified by upper-left corner coordinates, width and height. The 
methods are summarised in Tables 4.4 and 4.5. 
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Table 4.4 Methods provided by the Raster class to inspect pixel values. 

int [] getPixel(int x, int y. int [] data) 

float[] getPixelCiO't x, int y. float[] data) 

doubler] getPixel(int x, int y, doubler] data) 

iot[] getPixels(int x, int y, int w, int h, int[] data) 

float[] getPixels(int x, int y, int w, int h, float[] data) 

doubler] getPixels(int x, int y, int w, int h. doubler] data) 

int getSample(int x, int y. int band) 

float getSampleFloat(int x, int y, int band) 

double getSampleDouble(int x, int y. int band) 

iot[] getSamples(int x, int y. int Y, int h, int band, iot(] data) 

float[] getSamples (int x, int y, int w, int h, int band. float[] data) 

doubler) getSamples(int x, int y, int w, int h, int band, doubler] data) 

Table 4.5 Methods provided by Wri tableRaster to modify pixel values. 

void setPixel(int x, int y, int [] data) 

void setPixel(int x, int y, float [] data) 

void setPixel(int x, int y, double () data) 

void setPixels(int x, int y, int 0, int h, int [J data) 

void setPixelsCint x. int y, int w, int h, float [] data) 

void setPixelsCint x, int y, int w, int h, double [] data) 

void setSampleCint x, int y, int band, int value) 

void setSampleCint x, int y, int band, float value) 

void setSample Cint x, int y, int band, double value) 

void setSamplesCint x, int y, int w, int h, int band, int [] data) 

void setSamples (int x. int y. int w, int h. int band, float [] data) 

void setSamplesCint x, int y, int w, int h, int band, double [) data) 

The parameter band used by the sample-based methods is always 0 for greyseale images; 
for RGB colour images, it can be 0, I or 2, corresponding to the red, green and blue bands 
(or channels or components) of the image. 

Note that the getPixel () , getPixels () and getSamples () methods have two modes 
of operation. We can supply these methods with an existing array ofint, float or double, 
ignoring the return value of the method; or we can pass in null as the array parameter, in 
which case the method allocates storage and returns a reference to the array. 

Let us look at a simple example to illustrate how these methods are used in practice. 
Suppose that we have a greyscale Bufferedlmage called image and we wish to divide all 
its grey levels by two. This can be done with the following code: 

WritableRaster raster = image.getRaster(); 
int value; 
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4.2.3 

4.2.4 

4.2.5 

for (int y ~ 0; y < image.getHeight(); ++y) 
for (int x ~ 0; x < image.getWidth(); ++x) { 

value ~ raster.getSample(x, y, 0) / 2; 
raster.setSample(x, y. 0, value); 

} 

The first line obtains a Wri tableRaster for the image. We then iterate over each pixel of 
the image, retrieving its grey level with one method call, dividing it by two and then writing 
the scaled value back into the image with another method call. 

The DataBuffer classes 

Working with Buff eredImage objects at the Raster level is sufficient for most tasks, but 
on occasion it may be more convenient or more efficient to descend to the DataBuffer 
level. For example, let us suppose that we wish to write the pixel data of a greyscale image 
to a file in binary form. We could do this on a pixel-by-pixel basis, using getSample O. 
A more direct approach is illustrated by the following code: 

Output Stream output = 
new BufferedOutputStream(new FileOutputStream(file»; 

DataBufferByte db ~ 
(DataBufferByte) image.getRaster().getDataBuffer(); 

output.write(db.getData(»; 

DataBufferByte is the concrete subclass of DataBuffer used to manage storage for 
image types such as TYPE_BYTE_GRAY and TYPE_3BYTE_BGR. (Other subclasses are 
DataBufferShort, DataBufferUShort and DataBufferInt.) The getDataO method 
call returns a byte array that can be passed directly to the write 0 method of the output 
stream. 

RasterOp, BufferedlmageOp and BufferedlmageFilter 

lava2D supports the processing of BufferedImage objects through the RasterOp and 
BufferedlmageOp interfaces. Classes that implement these interfaces can perform opera­
tions in which a single output image is generated from a single input image. We shall defer 
any further discussion of these interfaces until Chapter 6; in that chapter and in subsequent 
chapters you will see many examples of classes that implement BufferedlmageOp to carry 
out various different image processing operations. 

The BufferedImageFil ter class acts as a bridge between the 'old' approach to image 
processing in Java, involving the use of ImageFilter classes, and the new approach, in 
which Bufferedlmage objects are processed with a BufferedlmageOp. Essentially, a 
BufferedlmageFilter converts a BufferedlmageOp into an ImageFilter that pro­
cesses Bufferedlmage objects according to the producer-consumer paradigm. 

Reading a Bufferedlmage 

The package com. sun. image. codec . j peg contains classes to support the reading of 
images from, and writing of images to, datastreams that have been compressed using the 
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JPEG compression technique (see Chapter 12). The main workhorse is JPEGCodec, a 
factory class with static methods that manufacture instances of JPEGlmageDecoder (for 
reading images) and JPEG ImageEncoder (for writing them). For example, to load an image 
from the file in. j pg, we do the following : 

FilelnputStream fileStream = new FilelnputStream C' in. jpg") ; 
JPEGlmageDecoder input = JPEGCodec.createJPEGDecoder(fileStream); 
Bufferedlmage image = input.decodeAsBufferedlmage(); 

Writing the image out to a new JPEG file is equally straightforward: 

FileOutputStream fileStream = new FileOutputStream(lI out.j pg n); 
JPEGlmageEncoder output = JPEGCodec.createJPEGEncoder(fileStream); 
output.encode(image); 

4.3 Java Advanced Imaging 

The Java Advanced Imaging API, abbreviated here to JAI, is a relatively recent development. 
At the time of writing, it was still in beta testing and was somewhat buggy. JAr is an extension 
to Java and is not part of the standard Java 2 platform. It builds on the image processing 
capabilities introduced through the Java2D API, adding support for float and double pixel 
data types, tiled images and operations that have more than one input image. (Tiled images 
facilitate more efficient partial processing of an image, particularly as image dimensions 
become large.) 

An arbitrary image processing task is performed in JAI by linking together various 
operators in a processing graph. This graph is rather like a map that specifies the paths 
along which image data can flow from one operator to another. The graph is evaluated in 
one of three different ways in order to produce one or more output images. In the rendered 
execution model, the source of image data associated with an operator is fixed at the moment 
that the operator object is created. This means that a processing graph always generates 
the same results, regardless of whether the input images have changed. In the renderable 
execution model, the graph is not evaluated at the time that it is created; instead, processing 
is deferred until a request for rendering is made. The request propagates backwards and 
causes image data to be pulled through the graph- hence the term 'pull model' sometimes 
used to describe this type of processing. In this model, any changes that occur to the input 
images before the request for rendering will be reflected in the output. The third execution 
model is the remote execution model. This allows an image processing task to be distributed 
across a number of networked machines. 

JAl promises to be a significant enhancement of Java's image processing capabilities. 
However, we do not consider it further in this book; instead, we concentrate on developing 
image processing tools using the standard APls of the Java 2 platform. The main advantage 
of this approach is that the programs described here will work on any system running Java 
2; JAl, on the other hand, is not part of the standard distribution and is not guaranteed to 
be available on all systems that support Java. In any case, our aim here is to explore the 
fundamental operations of image processing and see how they can be implemented using 
Java. The comparatively straightforward model for image processing provided by classes 
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such as Bufferedlmage and BufferedlmageOp means that programming issues do not 
obscure our educational objectives. The greater sophistication of JAI means that program­
ming issues tend to dominate when using this API, at the expense of those educational 
objectives. We also note here that JAI comes complete with many standard image process­
ing operations built in. There is little practical benefit to 'reinventing the wheel' in JAI. By 
using only the standard Java classes, however, we can be sure that there is both educational 
and practical value in the programming that we do. 

4.4 Further reading 

For more detail on image handling in Java 1.0/1.1, see Exploring Java by Niemeyer and 
Peck [35] or Java AWT Reference by Zukowski [55]. The defioitive guide to the Java2D API 
is Knudsen's Java 2D Graphics [27]. A very good text on all aspects of Java programming 
is Eckel's Thinking in Java [13]. 

Sun's Java website holds information on the lava2D and lava Advanced Imaging APIs. 
The former is at http : //java . sun. com/products/java-media/2Dlindex . html and 
the latter is at http://java.sun . com/products/ java-medial jail. 

4.5 Exercises 

I. Examine the Java program below. Explain why it prints -I twice on the console when 
it is executed with a GIF or JPEG image specified as a command line argument, and 
outline a simple modification that will enable the program to perform in the expected 
manner. 

import java . awt . *; 

public class ImageTestl { 

} 

public static void main(String[) argv) { 

} 

if (argv.length > 0) { 

} 

Image img = Toolkit .getDefaultToolkit() .getImage(argv[O); 
System.out.println(img.getWidth(null»; 
System.out.println(img.getHeight(null»; 

2. Write an application or applet that 

(a) Reads a GIF or IPEG image into an Image object 
(b) Uses PixelGrabber to extract a square region of pixels from the centre of the image, 

the dimensions of this region being half those of the image 
(c) Uses MemorylmageSource to create a new Image from the extracted data 
(d) Displays the new image 
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Write the equivalent program using CroplmageFil ter and compare the performance 
of the two programs. 

3. The Bufferedlmage class can represent images having different pixel data types. Chap­
ter 3 described an alternative approach in which a different class is used for each data 
type, the common attributes and behaviour being inherited from an abstract base class. 
Compare and contrast these two approaches. (If you know C++, you might like to also 
consider how features such as templates provide yet another way of representing images 
that have different pixel data types.) 

4. Write a program that reads JPEG-compressed greyscale image data into a 
Bufferedlmage and then iterates over all pixels in the image to detennine the 
minimum, maximum and mean grey levels, writing this information to System. out. 

5. Write a program that reads a colour image from a JPEG file into a Bufferedlmage 
object and then counts the number of pixels with a colour similar to some reference 
colour. This reference colour should be specified as red, green and blue values on the 
command line. 'Similar' in this case means that the distance between a colour and the 
reference colour in RGB space is less than 10. What happens when you attempt to run 
the program on a greyscale image? 



5.1 

5.1.1 

CHAPTER 5 

Basic image manipulation 

5. 1 Storage 62 

5.2 Reading and writing images in Java 68 
5.3 Display 80 
5.4 Printing 88 
5.5 Manipulation of pixel data 94 
5.6 Further reading 101 

5.7 Exercises 102 

This chapter discusses key issues relating to the storage, display and printing of 
digital images and gives practical examples in Java where appropriate. 11 also 
considers basic pixel manipulation tasks slich as expanding or shrinking an image 
and extracting regions of interest. The chapter concludes with a brief e.xamination 
of simple algebraic operations on images. 

Storage 

Storage media 

Storage for digital images may be categorised as short-term, online or archival. 
Sbort-term storage is memory-based, employing eid,er the general-purpose RAM of 

the host computer or the dedicated memory of a 'framestore'. The latter is a piece of 
specialised hardware that provides storage space for one or more images and facilitates 
rapid access by the host computer. Frarnestores may provide hardware support for fast 
'zoom and roam ' operations (analogous to examining a picture by moving a magnifying 
glass over it). Memory-based storage is fast, but it is normally volatile. meaning that image 
data are no longer available once the supply of power to the hardware has been interrupted. 
Memory is also the most expensive form of storage. 

Online storage is non-volatile and allows relatively rapid access to image data. It is 
typically provided by the host computer's own hard disk. Disk-based storage is slower but 
substantially cheaper d,an memory-based storage. 

Archival storage is used for the long-term archiving of image data. It typically employs 
removable media, and access to data is slow compared with fixed-disk or memory-based 
storage. A key advantage, however, is that data can be exchanged easily. The standard 
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3.5-inch, high-density diskettes used with personal computers have a limited capacity, 
sufficient for five 512 x 512, 8-bit greyscale images. or a single 512 x 512, 24-bit colour 
image (assuming no data compression). Magnetic tape can have a storage capacity several 
thousand times greater than that ofthe lowly 3.5-inch diskette. Recordable CD technology is 
becoming commonplace. CDs cai, store approximately 650 Mbyte and they are considerably 
more robust than magnetic tape; their shelf life estimated to be in excess of thirty years, 
compared with approximately seven years for tape. 

File formats 

When placing images into online or archival storage, it is important to select an appropriate 
file format. This will determine not only how the image data are stored, but also what 
additional information is stored with the pixel values. Many file formats adhere to the 
simple model shown in Figure 5.1 , in which an image file consists of a header segment 
and a data segment. The header will contain, at the very least, the width and the height of 
the image-since it is impossible to display or process any image without knowledge of its 
dimensions. The headers of most file formats begin with a signature or 'magic number'-a 
short sequence of bytes designed to identify the file as an image with that specific format. 

magic : 
number , 

bytes • . .. ' 
~~ __ ~ __ -L __ ~ __ ~ __ L-~ __ ~ __ -L __ ~ __ ~ __ L-~~~ __ -LI ~~I~~J 

image data 
header ... --------------------------- - - - - - - --

'. • 

Figure 5.1 Basic structure of an image file. 

File formats can be grouped roughly into three categories. Device-specialised formats 
have been tailored for use with specific pieces of computer hardware. The structure of the 
image file may be chosen to facilitate rapid display on a particular type of workstation, for 
example. The disadvantages of device-specialised formats include their lack of portability, 
their inefficiency when used with other hardware, and the tendency of the fonnat to change 
when hardware is updated. 

Software-specialised formats are those designed by a software vendor to be used with a 
particular program or class of programs. Examples include the PCX and Windows bitmap 
(BMP) formats commonly found on PCs, or the MacPaint format used on Apple Macintosh 
computers. The advantages and disadvantages are similar to those for device-specialised 
formats. 

Interchange formats are designed to facilitate the exchange ofimage data between llsers, 
via removable storage media or computer networks. It is essential that they are usable with 
the widest possible range of hardware and software. Image compression (see Chapter 12) 
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is often a standard feature of interchange formats, since it reduces storage requirements and 
transmission times. Examples of common interchange formats are 

• GIF (Graphic Interchange Format) 

• PNG (Portable Network Graphics) 

• JFIF (JPEG File Interchange Format) 

• TIFF (Tagged Image File Format) 

• PGM (Portable Grey Map) 
• FITS (Flexible Image Transport System) 

GIF and JFIF i are the lingua/ranca for images on the World-Wide Web. PNG is a replace­
ment for GIF which was developed when legal problems arose with GIE Both PNG and 
PGM are described in more detail later. 

Interchange formats often support the storage of arbitrary, user-defined information with 
the image data. This allows processing of images in a variety of situations. In astronomy, 
for example, it is important that we know the exact circumstances of data acquisition when 
carrying out image analysis. The FITS format used for astronomical images guarantees 
this by allowing a large amount of relevant information to be placed in the header. 

Simple file fortnats have headers of fixed size. The various pieces of information needed 
to process an image are located at fixed offsets from the start of the file. For example, ifthe 
magic number occupies four bytes, then bytes 5-8 and 9-12 might be used to store image 
width and height, respectively. Tagged formats do not require that information is stored at 
fixed locations in an image file; instead, they make use of special strings or codes to identify 
particular items of data. Examples of tagged formats are FITS, which uses ASCII strings 
as tags; PNG, which uses four-byte sequences of uppercase or lowercase characters; and 
TIFF, which uses numeric codes. 

The PBM, PGM and PPM formats 

Let us examine a simple image format in more detail. The PGM format mentioned earlier 
is a popular format for greyscale images on Unix systems. It is one of a small family of 
closely-related formats; the others, PBM ('portable bitmap') and PPM ('portable pixmap'), 
are used to represent binary images and RGB colour images. respectively. 

These formats are distinguished by the two-character signatures shown in Table 5.1. 
There are two signatures per format because there are two different methods of data storage 
possible with each format: ASCI! storage, in which pixel values are stored in ASCll decimal 
form; and 'raw' or binary storage, in which pixel values are stored as bytes. 

The header of a PBM, PGM or PPM file begins with the appropriate signature, followed 
by one or more whitespace characters. (A single newline is typically used.) One or more 
comment lines, each begirming with the # character, may follow if desired. Typically, these 
will give some indication of the origin of the image or the subject matter that it depicts. 

Next in the header are the width and height of the image as ASCII decimal values, 
separated by whitespace. PBM files have 110 further header information, but PGM and 

! This is known colloquially as 'JPEG format' . However, the JPEG compression algorithms are actually inde­
pendent of any file format; indeed, JPEG compression is supported by the TIFF file format. 
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Table 5.1 Signatures of the various PBM, PGM and PPM image formats. 

Signature Image type Storage type 

PI binary ASCII 

P2 greyscale ASCII 

P3 RGB ASCII 

P4 binary raw bytes 
P5 greyscale raw bytes 
P6 RGB raw bytes 

PPM files contain a third integer value, again in ASCII decimal form, representing the 
maximum allowable pixel value. This can be less than 255, to signal that fewer than 8 bits 
are required for image representation. For ASCII-based PGM or PPM files, it can be greater 
than 255, indicating that the image is quanti sed using more than 8 bits2

. 

In the ASCII formats, the header is separated from the image data by whitespace. In 
an ASCII PBM file, pixel values are represented by the characters' I' and '0', interpreted 
as black and white, respectively. In an ASCII PGM file, grey levels are stored as ASCII 
decimal values, separated by whitespace. In an ASCII PPM file, the colour of each pixel is 
stored as a triplet of ASCII decimal values (in the order red, green, blue), each separated 
fi'om each other and from the surrounding pixel colours by whitespace. In any of the ASCII 
formats, no line should exceed 70 characters in length. 

In the raw formats, the header is separated from the image data by a single character 
of whitespace. (By convention, a newline is used.) In raw PGM files, each pixel value is 
stored as a single byte. In raw PPM files , each pixel's colour is stored as a triplet of bytes 
(in the order red, green, blue). In a raw PBM file, each pixel value occupies just one bit of 
storage. This is achieved by packing eight pixel values into each byte of data. If necessary, 
each row of the image is padded out such that its width is a multiple of eight. This ensures 
that a single row is represented by a whole number of bytes. 

Figure 5.2 shows a very simple 7 x 7 greyscale image and its representation as ASCII 
and raw PGM files. The main advantage of the ASCII format is that pixel values can be 
examined or modified very easily using a standard text editor. (Of course, this is likely to 
be practical only for relatively small images.) Files in the raw format cannot, in general, be 
viewed or edited in the same way, since they usually contain many unprintable characters3. 

(The example in Figure 5.2 is an exception.) 

The advantage of the raw format is that it is much more compact; in a raw PGM file, pixel 
values are coded using only a single character, but in an ASCII PGM file, as many as four 
characters may be required for each pixel value- with the result that ASCII files consume 
up to four times as much space as raw files. 

2 Although chis is perfectly legal, most public domain software supporting these formats assumes that PGM and 
PPM files store 8-bit and 24-bit images, respectively. 

3 Pixel values in the range 32-126 are represented by printable ASCII characters. 
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P2 
# a simple PGM image 
7 7 255 

120 120 120 
120 120 120 
120 120 120 
120 33 33 
120 120 120 
120 120 120 
120 120 120 

P5 
# a simple PGM image 
7 7 255 

120 120 
33 120 
33 120 
33 33 
33 120 
33 120 

120 120 

120 120 
120 120 
120 120 

33 120 
120 120 
120 120 
120 120 

xxxxxxxxxx!xxxxxx!xxxx! ! ! ! !xxxx!xxxxxx!xxxxxxxxxx 

Figure S.2 A simple image and representations of it as ASCII and raw PGM files. In 
general, the contents of a raw PGM cannot be listed in this way due to the presence of 
unprintable characters. 
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The portable network graphics (PNG) format 

The PNG image format is one of the newer formats. Its development was motivated 
by legal problems relating to the patented compression algorithm used in GIF images. 
However, the format has evolved into something considerably more sophisticated than a 
simple replacement for GIF. The latest version of the PNG specification and other relevant 
information can be obtained via FTP from ftp://ftp. Ull. net! graphics/png/; there is 
also a web site for PNG at http://www.cdrom.com/pub/png/. 

The PNG format supports: greyscale images with up to 16 bits per pixel; indexed colour 
images with a 256-colour palette; and RGB colour images with up to 16 bits per component, 
or 48 bits per pixel. For images with fewer than 8 bits per pixel , multiple values can be 
packed into a single byte to reduce file size. The data stream is always compressed using 
a variant of the LZ77 algorithm described in Chapter 12. This compression algorithm 
is lossless, i.e., the original data stream can be restored without any loss of information. 
(In contrast, JPEG compression is lossy- so an image is changed slightly by a cycle of 
compression and decompression.) 

For display purposes, PNG allows 'gamma correction' infonnation to be stored with 
an image. This allows display software to compensate for the nonlinear characteristics of 
a display device and makes it possible to display the image so that it looks the same on 
different devices. 

PNG also supports the notion of transparency. In an indexed colour image, we can 
specify that a particular entry in the palette is a 'transparent colour'. The display software 
may choose to ignore pixels with this colour, making whatever is behind the image visible 
at those locations. More generally, PNG supports the use of an 'alpha channel', which 
specifies transparency on a pixel-by-pixel basis. An alpha value of a signifies that a pixel is 
fully transparent, and therefore invisible when displayed; an alpha of255 (for 8-bit images) 
signifies that the pixel is fully opaque, such that it hides whatever is behind it when displayed; 
intermediate values indicate some degree of blending of pixel grey level or colour with that 
of the background. 

File structure 

A PNG file consists of an eight-byte signature, followed by a series of chunks. Each chunk 
consists of: a 32-bit integer giving the number of bytes in the chunk's data field; a four-byte 
code to indicate chunk type, consisting of uppercase and lowercase letters; zero or more data 
bytes; and a 32-bit cyclic redundancy check (CRC) for the chunk, which a PNG decoder 
can use to test whether the chunk data are valid. Table 5.2 gives some examples of chunk 
types. 

Every PNG file must contain a chunk of type lHDR, representing the image header. The 
header specifies, amongst other things, the dimensions, colour type and bit depth of the 
image . Colour type indicates whether the image is a greyscale or colour image and whether 
colour is represented by ROB values at every pixel or by an index into a colour palette. It 
also indicates whether alpha values are stored with each pixel. Bit depth is the number of 
bits used to represent each component of a pixel 's value. Bit depths of 1, 2 , 4 , 8 or 16 are 
possible, although not all depths are permined for all colour types. 

Every PNG file must contain one or more lDAT chunks which hold the image data. If 
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Table 5.2 Various chunk types in the PNG file format. A lowercase first letter for a 
chunk type indicates that the chunk is not critical to proper interpretation of a PNG file. 
A lowercase last letter indicates that it ;s safe to simply copy the chunk from an input file 
to an output file as it will not become invalid if we change the image data in any way. 

Chunk type 

IHDR 
lDAT 
lEND 

PLTE 
gA;"I.1A 

pHYs 
tEXt 
tIME 

Usage 

image header 
image data 
end of image file 

colour palette 
gamma correction 

pixel's physical dimensions 
textual comment 
time of last modification 

there is more than one IDAT chunk, they must appear consecutively, with no intervening 
chunks. The data within an IDAT chunk are compressed. 

Finally, every PNG file must end with an lEND chunk, which marks explicitly the end 
of the datastream. 

5.2 Reading and writing images in Java 

We saw in Chapter 4 that GIF and JPEG images are supported implicitly in Java. Loading of 
a GIF or JPEG image into an Image object can be initiated with a call to the getImage () 
or create Image () methods of the Applet and Toolkit classes. For general image 
processing, this mechanism has a number of limitations: 

• It is read-only; there is no support for writing images in these formats. 

o It cannot be extended easily to support other formats. 

o It loads images asynchronously, so special measures may need to be taken to delay 
processing until loading has completed. 

With Java 2, explicit handling of JPEG image files is supported via the classes of the 
com. sun. image. codec . j peg package. These classes make it possible to load image data 
synchronously into Bufferedlmage objects, which is much more convenient for general 
image processing. It is also possible to write image data to a JPEG file. 

One problem with this is that JPEG compression is lossy (see Chapter 12). This means 
that every cycle of reading and writing an image degrades it a little more. A JPEG file is 
perhaps best used as the final destination for an image-a way of archiving it in the most 
compact manner possible, once we are sure we have applied all the necessary processing to 
it. We therefore need additional support for image formats that do not degrade the image 
in any way. 
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5.2.1 PBM, PGM and PPM images 

Zukowski [55] presents a class PPMDecoder that can read colour images in the PPM format. 
The ASCII and raw binary variants of the format are both supported. The class follows the 
producer-consumer paradigm of Java 1.0/ 1.1 and implements the ImageProducer inter­
face. Instances ofthe class generate data for Image objects. 

Jef Poskanzer, designer of the PBM, PGM and PPM formats, has written a more 
general PPMDecoder class that can handle all three formats, along with a PPMEncoder 
class that writes data in the raw PPM formats. The decoder and encoder implement the 
ImageProctucer and ImageConsumer interfaces, respectively. Again, instances of these 
classes are intended for use with Image objects. The source code for these classes is 
available from http://ww ... acme.com/java/. 

In this section, we describe the key features of our own decoder and encoder classes 
for PBM, PGM and PPM images. These classes support the ASCII variants of the three 
formats and not the binary variants; we asswne that other, more appropriate formats will 
be used if more compact storage is desired. 

A decoder 

The design of the decoder is depicted in Figure 5.3. The class, named PPMDecoder, 
implements an interface called ImageDecoder. The reason for this will be explained 
shortly. The practical consequence of this is that the class must implement a method called 
decodeAsBufferedlmage 0 which does the job of reading image data and returning it in 
the form of a Buff eredlmage object. 

As Figure 5.3 indicates, a PPMDecoder object has an instance of java. io. Reader called 
reader and an instance of java. io. StreamTokenizer called parser (Plus a number of 
simple integer instance variables). Readers are used in Java programs for character-based 
input-which is precisely what we require here, given that the decoder is intended to handle 
the ASCII versions of the PBM, PGM and PPM formats. In the PPMDecoder class, reader 
acts simply as a source of data for parser. It is parser that does the hard work of breaking 
up the data stream into tokens which must then be interpreted as elements of the header, 
pixel values, etc. 

The default constructor for a PPMDecoder creates a decoder object that takes data from 
standard input (System. in). The other constructors create decoders that take data from an 
arbitrary InputStream or a named file. The default constructor and file-based constructor 
are actually defined in terms of the stream-based constructor. Its implementation is shown 
in Listing 5.1. The stream passed to the constructor is first transformed into a Reader by 
wrapping it in an InputStreamReader, and the resulting object is then buffered using 
BufferedReader to improve efficiency. We then create parser and configure it to treat 
all lines beginning with # as comments and ignore them. Finally, the private method 
readHeader () is called to parse the header information. 

Information obtained from the header is stored in the instance variables type, width, 
height and maxValue. 'Get' methods are defined for these variables so that clients of a 
PPMDecoder object can inspect their values. The get Type 0 method returns an integer 
code indicating whether the input stream has data in PBM, PGM or PPM format. The 
predicates isBinaryO, isGreyO and isRGBO fulfi l a similar role. 
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«interface» 
ImageDecoder 

BufferedImage decodeAsBufferedImage() 

t;:. , , , , , , , 

PPMDecoder 

- Reader reader 
- StreamTokenizer parser 
- int t ype 
- int width 
- i nt height 
- i nt maxValue 
- int one :: 0 
- ; nt zero '" 1 

+ PPMDecoderO 
+ PPMDecoder(InputStream in) 
+ PPMDecoder(Str;ng ;mageFile) 
+ ; nt getType 0 
+ boolean is Binary() 
+ boolean ;sGrey() 
+ boolean isRGB() 
+ ; nt getW; dth 0 
+ ; nt getHe; ghtO 
+ ;nt getMaxValue () 
+ boolean bitmapInvers;onEnabled() 
+ void enableBitmaplnversion() 
+ void disableB;tmapInvers;on () 

Figure 5.3 UML diagram showing the design of the PPMDecoder class. 

LISTING 5.1 One of the constructors for a PPMDecoder. 

public PPMDecoder ( InputStream in) 

} 

throws IOException, PPMDecoderException { 
reader = new BufferedReader(new InputStreamReader(in)); 
parser = new StreamTokenizer(reader); 
parser,commentChar ('#'); 
readHeader () ; 
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The remaining methods and instance variables of Figure 5.3 deal with the special case 
of PBM files. The specification of the PBM format states that, contrary to what one might 
expect, PBM files are encoded such that a value of I represents black and a value of 0 
represents white4 By default, a PPMDecoder conforms to the specification and inverts 
PBM data on input so that a 'I' from the file is stored as 0 and a '0' from the tile is stored 
as I. This 'bitmap inversion' can be disabled or enabled, as required. 

Image data are not read from the stream until the method decodeAsBufferedlmageO 
is called. This delegates the task to one ofthe private methods parsePBMO , parsePGMO 
or parsePPM(). The code for parsePGM() is shown in Listing 5.2. This method creates 
an 8-bit or 16-bit greyscale linage, as appropriate, and gets a Wri tableRaster object with 
which it can address the pixels of that image (lines 10 and II ). Nested for loops iterate 

LISTING S.2 Method that reads PGM data into a greyseale image. 

private Bufferedlmage parsePGM() throws IOException, 
PPMDecoderException { 

int imgType; 
if (maxValue > 255) 

imgType Bufferedlmage .TYPE_USHORT_GRAY; 
else 

imgType Bufferedlmage .TYPE_BYTE_GRAY; 

10 Bufferedlmage img = new Bufferedlmage(width, height, imgType); 
II WritableRaster raster = img .getRasterO; 

" 
" for (int y = 0; y < height; ++y) 
14 for (int x = 0; x < width; ++x) { 
IS parser. nextToken 0 ; 
" if (parser.ttype == StreamTokenizer.TLEOF) 
\7 throw new EOFException("image appears to be truncated"); 
18 if (parser. ttype ! = StreamTokenizer. TT_NUMBER) 
19 throw new PPMDecoderException( 
20 "non-numeric value for pixel at ("+ x + II, II + Y + ") II ); 

~I raster.setSample(x, y, 0, (int) parser.nval) j 

" } 
B 

24 return img; 

" " } 

4 This makes sense if we think of PBM images as being printed, rather than displayed on screen. 
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over all pixel coordinates. For every pixel, parser skips whitespace where necessary and 
obtains a new token (line 15), which should be numeric since no other characters are allowed 
in the data segment of a PBM, PGM or PPM file. This value is then written to the raster at 
the current coordinates (line 21). 

The following fragment of Java code shows how one might read an image from a PGM 
file named on the command line of the application. 

PPMDecoder pgm = new PPMDecoder(argv[O)); 
Bufferedlmage image = pgm.decodeAsBufferedlmage(); 

An encoder 

The design ofthe encoder is depicted in Figure 5.4. The PPMEncoder class implements the 
ImageEncoder interface, meaning that it must provide a method encode () which takes 
the image to be encoded as a parameter. A PPMEncoder uses wri ter, an instance of 
java. io. PrintWri ter, to output image data in ASCII form. Constructors for the class 
mirror those of the decoder; the default constructor creates a PPMEncoder that writes to 
standard output (System. out) and the other two constructors create encoders that write to 
an arbitrary output stream and to a named file. Code for the latter is shown in Listing 5.3. 

«interface» 
ImageEncoder 

void encode(Bufferedlmage image) 

-
-
-
-
-

f;o. , , 

, 

PPMEncoder 

Pri ntWri ter wri te r 
int type 
int maxValue = 255 
i nt one"" 0 
boolean comments 

+ PPMEncode r () 
+ PPMEncoder(OutputStream out) 
+ PPMEncoder(String imageFile) 
+ boolean commentsEnabled() 
+ void enableComments() 
+ void disableComments() 
+ boolean bitmaplnversionEnabled() 
+ void enableBitmaplnvers;on() 
+ void disableBitmaplnversion() 

Figure 5.4 UML diagram showing the design of the PPMEncoder class. 
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LISTING 5.3 One of the constructors for a PPMEncoder. 

public PPMEncoder(String filename) throws IOException { 
writer = new PrintWriter( 

new BufferedWriter( 
new FileWriter(filename))); 

} 

As in PPMDecoder, there are methods to control the inversion of binary images when 
writing to PBM files. The predicate commentsEnabled 0 indicates whether a comment 
line will be added to a PBM. PGM or PPM file. The methods enableComments 0 and 
disableComments 0 turn this behaviour on and off, respectively. The comment line, if 
added, simply records the time and date of file creation. 

The task of actually encoding the image in PBM, PGM or PPM format is carried out 
by the encode 0 method. When passed an image, this method checks its type and hence 
determines the most appropriate format for the image. It writes a header and then calls one 
of the private methods wri tePBMO , wri tePGMO or wr i tePPMO to write the image data. 

Creating your own format: an example 

The ASCI! versions of the PBM, PGM and PPM formats are easy to read and write, but 
are not particularly compact. The raw versions of these formats are more compact, but 
they mix ASCII and binary data in the same file, which is not particularly elegant. For this 
reason, we present our own simple, pure binary format in this section. We shall call th is the 
'SIF format', SIF being an acronym for Simple Image File. The SIF format supports S-bit 
greyscale and 24-bit RGB colour images, which mayor may not be compressed using a 
lossless technique. (V/e support data compression in SIF images because implementing it in 
Java is very straightforward, thanks to the classes supplied in the standard java. util. zip 
package.) In colour images, a pixel's colour components are stored in BGR order rather 
than RGB order, since this makes it possible to write the image more efficiently in some 
situations. 

A SIF image has a twelve-byte header. The first four bytes are the signature. This 
is followed by a pair of 32-bit integers representing the width and height of the image, 
respectively. All remaining bytes in the file are compressed or uncompressed image data. 
The signature is used to indicate image type and compression status, as indicated in Table 5.3. 

Table 5.3 Image types supported by the SIF format. 
Signature Image ~'Pe 

G IMG 8·bil greyscaJe, uncompressed 

gIMG 8·bit greyscale, compressed 

CIMG 24·bi[ RGB colour, uncompressed 

c:IMG 24·bit RGB colour, compressed 
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We can design SIFEncoder and SIFDecoder classes similar to those created for PBM, 
PGM and PPM files. The design of SIFEncoder is shown in Figure 5.5. SIFEncoder 
objects are constructed and used in exactly the same way as PPMEncoder objects. Internally, 
a SIFEncoder uses a DataOutputStream for output. This is the rnost appropriate stream 
class to use when writing binary data. The only other instance variable is a Boolean flag to 
indicate whether image data should be compressed when written. Methods are provided to 
check this flag and to set or reset it. 

«interface» 
ImageEncoder 

void encode(Bufferedlmage image) 

-
-

!;-. , , , , , , , 

SIFEncoder 

DataOutput5tream output 
boolean compression 

+ SIFEncoderO 
+ SIFEncoder(OutputStream out) 
+ SIFEncoder(String imageFile) 
+ boolean compressionEnabled() 
+ void enableCompress;on() 
+ void d;sableCompression() 

Figure 5.5 UML diagram showing the design ofthe SIFEncoder class. 

The implementation ofSIFEncoder's encodeO method is shown in Listing 5.4. There 
are two distinct cases to deal with when writing image data. The first (lines 10--20) is when 
the image passed to encode 0 stores its pixel values as single bytes (representing grey level) 
or groups of three bytes (representing the blue, green and red colour components). In this 
special case, the way that data are stored in memory by a BufferedImage object matches 
the way that we wish to store the data in the file . We can therefore access the image's data 
buffer directly (lines 10 and II) in order to write the data in a more efficient manner. If 
compression is not required, a single call to the output stream's wri te method will deliver 
the data buffer's entire contents to the stream (line 18); if compression is required, we must 
create an instance of DeflaterOutputStream from the normal output stream and write 
the data buffer contents to it. 

Of course, the image may store data in such a way that we cannot merely dump the contents 
of its data buffer to the output stream. An example is a colour image that packs red, green and 
blue values into a single integer (i.e., an image of type BufferedImage. TYPE_INLRGB). 
Such cases are dealt with by lines 27-42 of encoder O. We start by creating a Raster 
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LISTI NG S.4 Java method to encode an image in the SIF format. 

publiC void encode(Bufferedlmage img) throws IOException, SIFEncoderException { 

writeHeader(img); 

if (img.getType() 
I I img.getType () 

Bufferedl mage TYPE_BYTE_GRAY 
Bufferedlmage TYPE_3BYTE_BGR) { 

II Access the data buffer directly 

DataBufferByte db = (DataBufferByte) img.getRaster().getDataBuffer(); 
byte() data - db .getData(); 
if (compression) { 

} 

DeflaterOutputStream deflater = new DeflaterOutputStream(output); 
deflater,write(data, 0, data,length); 
deflater finish(); 

else { 

} 

output write(data)j 
output flushO; 

" } 
23 else { 

" 
" 

" 
" 
" 
" 
" 
" 
" 
" 
" 
" 
'" 
" 
" 

II Write the image pixel-by-pixel 

Raster raster = img.getRaster(); 
if (compression) { 

} 

DeflaterOu~pu~S~ream deflater = new DeflaterOutputStream(output); 
for (int y : 0; y < img.getHeight(); ++y) 

for (int x = 0; x < img.getWidth(); ++x) 
for (int i = 2; i >= 0; --i) 

deflater.write(raster getSample(x , y, i»; 
deflater finish(); 

else { 

} 

for (int y : 0; y < img.getHeight(); ++y) 
for (int x = 0; x < img.getWidth(); ++x) 

for (int i = 2; i >: OJ --1) 

output.write(raster.getSample(x, y, i»; 
output. flush 0 ; 

~ } 

" } 

object with which we can address individual pixels. Then, for each pixel, we retrieve 
samples in reverse order (blue, then green, then red) and write directly to the output stream 
(line 40) or, if compression is required, to an instance ofDeflaterOutputStrearn that we 
have wrapped around the original output stream (line 33). 
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5.2.3 PNG images 

The SIF format is simple and convenient, but it is not very flexible. Also, it is a 'personal' 
image format; existing tools cannot read or write the format, so SIF images cannot be 
exchanged easily with others. It is therefore useful to support a recognised interchange 
format for compressed images, and PNG is an ideal candidate. 

Writing a PNG decoder and encoder from scratch would be a challenging task, given 
the sophistication of the format. So, rather than do this, we will use an existing imple­
mentation from Visualtek (http://www.visualtek.com/PNG/).This package provides 
classes called PNGDataDecoder and PNGDataEncoder which are sui table for our purposes. 
However, they are not used in quite the same way as the encoder and decoder classes that we 
have already developed for PBM, POM, PPM and SIF images. We can hide this fact from 
users and present them with a consistent set of encoder and decoder classes by creating two 
'wrapper' classes, PNGDecoder and PNGEncoder. 

Figure 5.6 shows the design of the PNGDecoder class. As far as clients ofPNGDecoder 
are concerned, PNGDecoder objects behave in much the same way as PPMDecoder or 
SIFDecoder objects. They can be constructed from input streams or named fi les, they can 
be queried for information on image dimensions and they can be tested to see whether the 

« interface» 
ImageDecoder 

Bufferedlmage decodeAsBufferedlmage() 

f;; , , , , , , , 

PNGDecoder 

- PNGDataDecoder decoder 
- PNGlnfo startlnfo 
- PNGlnfo endlnfo 

+ PNGDecoderO 
+ PNGDecoder(InputStream in ) 
+ PNGDecoder(String imageFile) 
+ i nt getType 0 
+ boolean isBinary() 
+ boolean isGrey() 
+ boolean hasPalette() 
+ boolean i sRGB 0 
+ int getWidth() 
+ int getHeight() 
+ int getBitDepth() 

Figure 5.6 UML diagram showing the design of the PNGDecoder class. 
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image is a greyscale image or a colour image. Internally, a PNGDecoder is composed of 
an instance of PNGDataDecoder, called decoder, and two instances of PNGlnfo, called 
startInfo and endlnfo. All of the decoding is done by decoder. The two objects 
startlnfo and endlnfo store critical information that may appear in chunks before and 
after the image data. The 'get' methods of PNGDecoder retrieve their information from 
start Info. 

Putting it all together 

So far, we have developed three encoder classes and three decoder classes to deal with five 
different image formats. The decoders all behave in the same way: they can be constructed 
to read from standard input, an arbitrary input stream or a named file; and they can be made 
to read image data into a Bufferedlmage by calling the decodeAsBufferedlmage () 
method. Likewise, the encoders all behave in the same way; they can be constructed 
to write to standard output, an arbitrary output stream or a named file; and they can be 
made to write image data by calling the encode 0 method with a Bufferedlmage as a 
parameter. 

The only visible difference between these classes and the JPEG encoder and decoder in 
Java's com. sun. image. codec. jpeg package is in the way that we create a new decoder or 
encoder. We can conceal this difference if we hide the standard JPEG decoder and decoder 
inside wrapper classes, as we did for the PNG format. 
these wrapper classes. 

Figure 5.7 shows the structure of 

«interface» 
ImageDecoder 

BufferedImage decodeAsBufferedImageC) 

, 

JPEGDecoder 

- ]PEGImageDecoder decoder 

+ JPEGDecoderO 
+ JPEGDecoder(InputStream in) 
+ JPEGDecoder(String imageFile) 

«interface» 
ImageEncoder 

void encode(BufferedImage image) 

£i. , , 
: , , , 

J PEGEncoder 

- ]PEGImageEncoder encoder 

+ JPEGEncoderO 
+ JPEGEncoderCOutputStream out) 
+ JPEGEncoderCString imageFile) 

Figure 5.7 UML diagrams showing the design of the lPEGDecoder and lPEGEncoder 
wrapper classes. 

So we now have a consistent set of classes for reading and \¥fiting images in the PBM, 
PGM, PPM, SIF, PNG and JPEG formats. Every decoder class reads image data using 
the method decodeAsBufferedlmage 0, so we can define an interface that specifies this 
method and have each class implement the interface. Similarly, every encoder class writes 
image data using the method encode (), so we can define an interface that specifies this 
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method and have each class implement it. The nvo interfaces are called ImageDecoder 
and ImageEncoder. 

This seems like an unnecessary complication, but in fact it allows us to write polymorphic 
code. An example of this appears in Listing 5.5. This shows a class ImageFile containing 
two static methods. The first of these, createlmageEncoder O, takes a filename as a 
parameter, examines the suffix of the filename and rehlrns a new encoder object appropriate 
to that filename. The other method, createlmageDecoderO does the same but returns 
the most appropriate decoder object. 

LISTING 5.5 A class with factory methods that create encoder and decoder objects 
appropriate to particular filenames. 

public class ImageFile { 

public static ImageEncoder createlmageEncoder(String file) 
throvs IOException, ImageEncoderException { 
if (file.endsWith(l.pbm") 11 file,endsWith(l.pgm") 11 file endsWith(l.ppm"» 

return new PPMEncoder(file); 
else if (file. endsWith(".sif "» 

return new SI FEncoder(file)i 
else if (file,endsWith(l.png"» 

10 return ney PNGEncoderCfile); 
II else if (file,endsWith(l.jpg") 11 file,endsWith(l.jpeg"» 
12 return new JPEGEncoder(file); 
13 else 
H thrOY new ImageEncoderException("cannot determine file format ") ; 

" } 
" 
17 public static ImageDecoder createlmageDecoder(String file) 
IS throys IOException, ImageOecoderException { 
19 if (file.endsWith(l.pbm") 1) file.endsWith(". pgm") 11 file endsWith(". ppm")} 
20 return new PPMDecoder(file); 
21 else if (file.endsWith(" .siflt)} 

" 
" 

return new SIFDecoder{file)j 
else if (file.endsWith(" .png"» 

return new PNGDecoder(file); 
else if (file.endsWith(l . jpg") 11 file.endsWith(" .jpeg"» 

return ney JPEGDecoder (file); 
27 else 
28 throw ney ImageDecoderException("cannot determine file format"); 

" } 

" " } 

For example, if we pass the filename test. png to createlmageEncoderO then a 
PNGEncoder that writes to a file of that name is created and returned. If, however, the 
filename test. sif is passed to the method then it creates and returns a SIFEncoder. This 
works because the method returns an object of type ImageEncoder and, since each of OUT 

encoder classes implements the ImageEncoder interface, instances of each class can be 
regarded as ImageEncoder objects. 

This concept is used frequently in the Java API. Methods like createlmageEncoderO 
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are described as factory methods because their job is to create objects of an appropriate 
type. Since client code manipulates these objects via an interface that is common to all 
of them, it need never know the actual type of object that has been created. A practical 
example of this is shown in Listing 5.6. Here, we see a Java program that converts between 
file formats. The factory methods are used to create decoder and encoder objects suitable 
for the filenames that have been specified on the command line. The key point to note is 
that if we subsequently developed encoder and decoder classes for another format- TIFF, 
say-then we would need to modify the factory methods and recompile the ImageFile 
class but we would not need to make any changes to the Convert program or recompile it. 

LISTING 5.6 A simple image format conversion program. 

public class Convert { 
public static void main(String[] argYl { 

if (argv.length > 1) { 

} 

try { 

} 

ImageDecoder input = ImageFile.createlmageDecoder (argv[O]) ; 
Bufferedlmage image = input.decodeAsBufferedlmage () j 
ImageEncoder output = ImageFile.createlmageEncoder(argv[1]); 
output . encode(image); 

catch (Exception e) { 
System.err.println(e); 
System.exit(l) ; 
} 

else { 

} 

System.err.printlnCliusage: java Convert infile outfilelt)j 
System.exit(l) ; 

" } 

" } 

Source code and bytecode for the classes described in the preceding sections is available 
on the CD. The classes have been grouped together in a single package, com. pearsoneduc . 
ip. io. You can use them in your own Java programs by inserting the statement 

import com.pearsoneduc.ip.io.*; 

at the beginning of the file. (Of course, you will first need to install the package and ensure 
that Java can find it by specifying a classpath either using the command line arguments of 
the Java interpreter or via the CLASSPATH environment variable.) The Convert program 
can be found in the Apps directory. 
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5.3 Display 

5.3.1 Hardware 

Images are normally viewed on a monitor employing cathode-ray tube (CRT) technology. 
In the neck of the tube are three electron guns, emitting narrow beams of electrons which 
are swept across the front face of the tube by deflection coils. The face is coated with a 
pattern of dots of three different types of phosphor, which emit varying amounts of red, 
green and blue light when struck by varying numbers of electrons. The phosphor dots 
are typically arranged into triangular groups of three: one red, one green, the other blue 
(Figure 5.8). They are sufficiently small to be unresolvable by the human eye; instead, what 
we perceive at each point on the screen is a mixture of light from the red, green and blue 
phosphors of a triplet. Each of the three electron beams is made to strike phosphors of a 
single colour by means of a 'shadow mask'. The intensities of the beams are modulated 
by the strength of the red, green and blue components of the colour video signal that is fed 
into the monitor. 

The phosphors in a CRT respond nonlinearly to the electron beam, so doubling the grey 
level of a pixel will not double the intensity of the light emitted from that point on the 
screen. The transfer characteristic which specifies how screen brightness relates to input 
grey level is a curve rather than a straight line. The shape of the curve is specified by the 
gamma parameter. If two monitors have different gammas, then a given image will look 
different on those monitors. Gamma is usually around 2.2 for most CRTs. 

Older image processing systems typically employ a separate monitor, dedicated to image 
display. It is common for newer systems to exploit the graphical user interface of the host 
computer, displaying images in a separate window on the host's own monitor. 

Although a computer's colour monitor has three independent electron guns for the red, 
green and blue components of a video signal, this does not guarantee that we will be able 
to display 24-bit RGB images. The limiting factor is the graphics hardware of the host 
computer. PC graphics cards have a fixed quantity of on-board video memory which can 
be configured for various different combinations of spatial and colour resolution. There is 
a trade-off between these two parameters; if spatial resolution is increased so that larger 
images can be displayed on-screen, then colour resolution may need to be reduced-with 
the result that those images may not be rendered accurately. 

electron guns 

phosphors 

OR 
~-OG 

shadow mask 

Figure 5.8 Image formation in a CRT monitor. 
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For example, suppose that we have a graphics card with 2 Mbyte of video RAM. The 
display of 24·bit colour at a resolution of 800 x 600 requires 800 x 600 x 3 = I, 440, 000 
bytes of storage-well within the capacity of the hardware. Now suppose that we wish to 
increase the resolution to 1024 x 768, to allow the display oflarger images in their entirety. 
The storage requirements for this would be 1024 x 768 x 3 = 2, 359, 296 bytes, exceeding 
the limits imposed by the hardware. 

There are two options open to us here: we can continue to drive our display at 800 x 600 x 
24 bits, accepting that larger images will not be fully displayed; or we can reduce the number 
of colours used for display, accepting that this may affect our perceprion of the image. In 
this case, 1024 x 768 x 16 bit resolution would be supported by the graphics card, and higher 
spatial resolutions might be possible (depending on the scanning frequencies supported by 
the monitor) if we were prepared to tolerate an even more restrictive 8-bit colour palette. 

Software: displaying images in Java 

Image display is relatively straightfoward in Java. An image can be drawn using methods 
of the Graphics or Graphics2D classes. An instance of Graphics or Graphics2D is 
known as a graphics context. It represents a surface onto which we can draw images, text 
or other graphics primitives. A graphics context could be associated with an output device 
such as a printer, or it could be derived from another image (allowing us to draw images 
inside other images); however, it is typically associated with a GUI component that is to be 
displayed on the screen. 

Image display using the AWT 

To display an image using the AWT, we must extend an existing AWT component and 
override its paint () method. In very simple applets or applications, extending Applet 
or Frame would be sufficient. However, a more useful solution is to extend Canvas, 
specialising it for image display. Canvas is ideal for this because it represents a blank 
area, on which nothing is drawn by default. Instances of the new class, which we may call 
ImageCanvas, can be aggregrated easily with other GUI components to create interactive 
image processing applets or applications. Listing 5.7 shows how ImageCanvas might be 
implemented. 

The paint () method of an ImageCanvas is called automatically whenever the display 
area needs refreshing-e.g., because a window was resized or uncovered. The Graphics 
object that paint () receives is the graphics context for the ImageCanvas. We must call 
one ofthe drawImage () methods provided by this graphics context to ensure that the image 
is painted onto the canvas whenever necessary. 

The full method prototype for drawImage () on line 13 of Listing 5.7 is 

publ ic boolean drawImage(Image i mg, int x, 
int y, ImageObserver obs) 

We are free to substitute a BufferedImage for the Image passed in as the first parameter of 
the method becauseBufferedImage is a subclass of Image. The next two parameters, x and 
y, represent the location of the image origin on the canvas. Normally, we would use values 
of zero for these parameters, as in Listing 5.7. The final parameter is an ImageObserver: 
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LISTING 5.7 An AWf component that displays images. 

import java.awt.*; 

public class ImageCanvas extends Canvas { 

Bufferedlmage image; II In Java l . x this would be an Image object 

public ImageCanvas(BufferedImage img) { 
image = img; 

" } 

" 
" public void paint (Graphics g) { 
13 g .drawlmage(image, 0, 0, this); 

" } 

" 
" } 

an object that will be notified of changes in the status of the image as it is loaded. (This is 
significant if we are displaying an Image, which may be loading in a separate thread, but 
not if we are displaying a Bufferedlmage, for which data are guaranteed to be available.) 
In Listing 5.7 we pass this , a reference to the ImageCanvas itself. We do this because 
every AWT component implements the ImageObserver interface and therefore has the 
capacity to observe delivery of image data and act accordingly. The method returns true 
if the image can be drawn fully, false otherwise. 

There are actually six different versions of draw Image () that are provided by a GraphiCS 
object. Full details of these can be found in books that explore Java graphics in more 
detail [55, 27]. Here we consider one other variation: 

public boolean drawlmage(Image img, int x, 
int y, int w, int h, ImageObserver cbs) 

The extra parameters in this version are the width and height to use for image display. The 
image will be scaled to fit this area, so this is one way of magnifying or shrinking an image 
prior to display. 

Java 2 provides Graphics2D, a graphics context capable of much more sophisticated 
operations. It has two additional versions of the drawImage method which can be useful: 

public void drawlmage(Image img. AffineTransform transform, 
ImageObserver cbs) 

public void drawlmage(Bufferedlmage img, BufferedlmageOp op, 
int x, int y) 
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The first of these methods transforms an image using the specified AffineTransform 
object before displaying it. This is a more general solution than the simple rescaling to 
a new width and height described previously. We will encounter the AffineTransform 
class again in Chapter 9, when we consider the geometric transformation of images. 

The second method applies an image processing operation to the image prior to display. 
The image itself remains unchanged. The image processing operation is defined in a class 
that implements the BufferedlmageOp interface. We will examine how to implement 
such a class in Chapter 6. For now, we will simply present in Listing 5.8 an alternat ive 
implementation of ImageCanvas that supports processing of the image prior to display. 
Instances of this new ImageCanvas class are constructed from an image and an image 
processing operation. The latter can be null if we do not wish to process the image. The 
paint 0 method tests whether the operation object is null and, if this is not the case, 
calls the version of drawlmageO that processes the image before displaying it (line 18). 
Before this can be done, we must obtain a Graphics2D object from the Graphics object, 
which can be accomplished via a simple cast. If operation is null, the standard version 
of drawlmage 0 is called (line 21). 

LISTING 5.8 An ImageCanvas that can process an image before displaying it. 

import java.awt.*; 
import java.awt.image.*; 

public class ImageCanvas extends Canvas { 

Bufferedlmage image; 
BufferedlmageOp operation; 

10 public ImageCanvas (Bufferedlmage img. BufferedlmageOp op) { 
II image = img; 
12 operation = op; 

" } 

" public void paint(Graphics g) { 
\~ if (operation ! = null) { 
" Graphics2D g2 = (Graphics2D) g; 
18 g2, drawlmage(image , operation. 0. 0); 

" } 
20 else 
" g.drawlmage(image, 0, 0, this); 
22 } 

" 
" } 
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Image display using Swing components 

In Java 2, we can make use of the Swing GUl components found in the j avax. swing 
package. Swing offers improved replacements for AWT components, along with many 
new and highly sophisticated classes for which there is no equivalent in the rather more 
primitive AWT. It therefore makes sense to use Swing for the development of new GUl-based 
applications. 

Unfortunately, problems can occur if we try to mix AWT-based components with Swing 
components. The AWT's 'heavyweight' components depend on peer objects native to the 
platform on which Java is running [55]; an AWT scroll bar, for instance, is implemented on 
the Microsoft Windows platform using the code that Microsoft have written to create scroll­
bars in MS Windows applications. The system-dependent aspects of this are concealed by a 
peer interface. By contrast, most of the components in Swing are 'lightweight'; that is, they 
are implemented purely in Java and are therefore independent of any components belong­
ing to the underlying platform. What happens in practice is that heavyweight components 
are invariably rendered on top of lightweight components, regardless of whether this was 
intended [14]. We should therefore endeavour to use Swing components only in GUI-based 
programs written for the Java 2 environment. 

There is no direct replacement for Canvas in Swing, but Swing does provide the JLabel 
component. A JLabel object is typically used to add a short piece of text, an icon or a 
combination of the two to a user interface. The intention is that the icon should be a small 
image, but this need not be the case. A JLabel can be constructed from an Imagelcon 
object, which, in tum, can be constructed from an Image or Bufferedlmage object. So, 
if we have a Bufferedlmage called image already available, a component to display that 
image can be created using 

Imagelcon icon = new Imagelcon(image); 
JLabel view = new JLabel(icon); 

or, more compactly, with 

JLabel view = new JLabel(new Imagelcon(image)); 

A simple Swing appl ication to load an image from a file and display it is shown in 
Listing 5.9. We extend Swing's JFrame class so that we will have a window in which to 
display the image. Line 10 invokes the parent class constructor with the image filename as 
a parameter. This has the effect of placing the filename in the titlebar of the window. Lines 
II and 12 load the image from the file. Line 13 creates a JLabel in which the image is 
drawn. Line 14 adds the JLabel to the frame's content pane. Lines 15-19 set up the event 
handling that will allow us to destroy the frame by clicking on the appropriate button on the 
titlebar. Finally, lines 25-27 create the frame, resize it to match the size of its contents and 
then make it visible. 

An alternative approach is to create a new component that is dedicated to the task of 
image display. We can do this by extending JLabel. A possible implementation is 
shown in Listing 5.lD. One important difference between this class and ImageCanvas 
from Listing 5.7 is that we must override the paintComponent() method, rather than 
paint O. The other features of the class-instance variable viewSize and the methods 
after paintComponent () -are there to support scrolling of the component when it is 
embedded in a JScrollPane. 



LISTING 5.9 A simple image display application using Swing components. 

import java.awt.*; 
import java.awt.image.*; 
import javax.swing.*; 
import com.pearsoneduc . ip.io.*; 

public class Display extends JFrame { 

public Display(String filename) { 
10 super(filename); 
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I I ImageDecoder input = ImageFile. createlmageDecoder (filename) ; 
12 Bufferedlmage image = input.decodeAsBufferedlmageO; 
Il JLabel view = new JLabel(new Imagelcon(image»j 
" getContentPane() . add (view) ; 
I~ addWindowListener(new WindowAdapter () { 
16 public void windowClosing(WindowEvent event) { 
" System.exit(O); 

" } 
" }); 
:lO } 

1I 

1I public static void main(String[] argyl { 
II if (argv .length > 0) { 
M try { 
2S JFrame frame = new Display(argv[O]); 
" frame. pack () ; 
27 frame. setVisible (true) ; 

" } 
" catch (Exception e) { 
JO System.err.println(e); 
31 System . exit (1) j 

" } 
" } 
~ else { 
35 System.err.println(lIusage: java Display imagefile tt

) j 

36 System.exit(1); 

" } 
" } 
J9 

., } 
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LISTING 5.10 A Swing component to display images. 

import java.awt.*; 
import java.awt.image.*; 
import javax.swing.*; 

publiC class ImageView extends JLabel implements Scrollable { 

" 

private Bufferedlmage image; 
private Dimension viewSize; 

II image to be displayed 
II size of vieY, if in a JScrollPane 

1\ public ImageView(Bufferedlmage img) { 

" 
" 
" 
" 
" " } 

" 

image -'" img; 
int width; Matb.min(256. image.getWidth(»; 
int height = Math.min(256, image.getHeight(»; 
viewSize • new Dimension(width, height); 
setPreferredSize(new Dimension(image.getWidtb(), image.getHeight(»); 

19 public void paintComponent(Graphics g) { 
~ g. drawlmage (image. 0, 0, this); 

" 
" 

} 

2J public void setViewSize(Dimension ne\.lSize ) { 
24 viewSize. setSize (newSize) ; 

" } 

" 21 public Dimension getPreferredScrollableViewportSize() { 
28 return viewSize; 
29 } 

JO 

)1 public int getScrollableUnitlncrement(Rectangle rect, int orient, int dir) { 
32 return 1 j 

" } 

" 35 public int getScrollableBlocklncrement(Rectangle r ect , int orient, int dir) { 
36 if (orient •• SwingConstants.HORIZONTAL) 
31 return image.getWidthO I 10; 
18 else 
)9 return image. get Height 0 I 10; 

" } 

" 42 public boolean getScrollableTracksViewportWidth() { 
43 return false; 
~ } 

" ~ public boolean getScrollableTracksViewportHeight() { 
47 return false; 

" } 

" '" } 
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The constructor of ImageView sets its preferred size to the image dimensions, so that 
the entire image will be visible if the component is used on its own. The view-Size is 
set to a maximum of 256 x 256. When an ImageView is embedded in a JScrollPane, 
the viewSize variable represents the dimensions of the viewport through which we see the 
image. If the image dimensions exceed viewSize then scrollbars will appear automatically 
at the sides of the image, allowing us to move the view to different parts of the image. 

An example: the Image Viewer application 

We can use the ImageView class described above as the basis of a complete image viewing 
application. This program loads an image from a file using the classes described in Sec­
tion 5.2 and displays it using an ImageView component. The application listens for mouse 
events occurring within the viewing area and translates cursor coordinates into image coor­
dinates. It then retrieves pixel grey level or colour at those coordinates and displays these 
data in a panel underneath the image. A final feature ofthe program is a 'magnifying glass' . 
Clicking on the magnifier button causes a small window to pop up containing a magnified 
view of the region surrounding the cursor. The size of this region varies according to the 
magnification factor that the user selects from a list beneath the magnified view. Figure 5.9 
shows the application in action. The code can be found on the CD, in the Apps directory. 

~ matlgrey.jpg I!I~ 13 

~ lot agnifier 13 

1 X 232 V142 J 1 grey level 34 1 1 ,@] I Maqnification I x3 ... 1 

Figure 5.9 An image viewing application. 
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5.4 Printing 

S.4.1 

Although it is possible to output digital images direct to photographic film using specialised 
equipment, it is more common (and less costly) to employ printing technology for the 
generation of hardcopy. The problem we face when attempting to print an image is that 
most printers produce a binary output; either a blob of ink is placed on the page, making 
that part of the page black, or it is not placed on the page, in which case that part of the page 
remains white. How, then, do we simulate intermediate shades of grey in an 8-bit image? 
Similarly, how can we use a small number of coloured inks to simulate the huge range of 
colours possible in a 24-bit image? 

Greyscale images 

Newspaper photograpbs simulate a greyscale, despite the fact that they have been printed 
using only black ink. Close examination reveals how the illusion is achieved; a newspaper 
picture is, in fact, made up ofa pattern of tiny black dots of varying size. The human visual 
system has a tendency to average brightness over small areas, so the black dots and their 
white background merge and are perceived as an intermediate shade of grey. 

The process of generating a binary pattern of black and white dots from an image is termed 
halftoning. In traditional newspaper and magazine production, this process is carried out 
photographically by projection of a transparency through a 'halftone screen' onto film. The 
screen is a glass plate with a grid etched into it. Different screens can be used to control the 
size and shape of the dots in the halftoned image. A fine grid, with a 'screen frequency ' of 
200-300 lines per inch, gives the image quality necessary for magazine production, whereas 
a screen frequency of 85 lines per inch is deemed acceptable for newspapers. 

Patterning 

A simple digital halftoning technique known as patterning involves replacing each pixel 
by a pattern taken from a 'binary font'. Figure 5.10 shows such a font, made up often 3 x 3 
matrices of pixels. This font can be used to print an image consisting of ten grey levels. A 
pixel with a grey level of 0 is replaced by a matrix containing no white pixels; a pixel with 
a grey level of I is replaced by a matrix containing a single white pixel; and so on. Note 
that, since we are replacing each pixel by a 3 x 3 block of pixels, both the width and the 
height of the image increase by a factorof3 . Figure 5.11 shows an example ofhalftoning 
using the binary font depicted in Figure 5.10. 

The patterns used in a binary font must be carefully chosen to avoid the generation of 
prominent stripes or other distracting texture in homogeneous regions of the image. 

Dithering 

Another technique for digital halftoning is dithering. Dithering can be accomplished by 
thresholding the image against a dither matrix. Recursive algorithms are available to 
compute ruther matrices wi th dimensions that are powers of two [37, II]. The first two 
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~ 
0 1 2 3 4 

5 6 7 8 9 

Figure 5.10 A 3 x 3 binary font for printing a greyscale. 

(a) (b) 

Figure 5.1 I Halftoning with a binary font. (a) B-bit greyscale image. (b) halftoned 
image. 

dither matrices, rescaled for application to 8-bit images, are 

D ~ [ ,~ 
128 32 "" 

DJ = [ 19~ 128 ] 64 224 96 
64 • 2 48 176 16 144 . 

240 112 208 80 

The elements of a dither matrix are thresholds. The matrix is laid like a tile over the 
entire image and each pixel value is compared with the corresponding threshold from the 
matrix. The pixel becomes wh ite ifits value exceeds the threshold or black otherwise. This 
approach produces an output image with the same dimensions as the input image, but with 
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less detail visible. To avoid loss of detail , we can enlarge the image first. For a dither matrix 
D,,, we must enlarge by a factor 2", using the approach outl ined in Section 5.5. Dithering 
an enlarged image in this manner is rather like the patterning approach discussed earlier, 
only the pattern is computed by comparison of pixel grey level with dither matrix elements, 
rather than being selected from a pre-existing font. 

Listing 5.11 shows how application ofa dither matrix to an image can be implemented in 
Java. This particular implementation uses a static method which we assume belongs to some 
unspecified class. Because the method is static, it can be called without first creating an 
instance of the class to which it belongs. A more object-oriented approach to implementing 
image processing operations is described in Chapter 6. Figure 5.12 gives examples of 
dithering done by this code using matrices DJ and D2. 

The Dither appl ication is provided on the CD. You can run this to experiment with 
dithering of greyscale images. The program dithers using both the D 1 and D2 matrices and 
presents a tabbed display that switches between the input image and the dithered images, 
allowing comparisons to be made easily. 

(a) (b) 

(c) 

Figure 5.12 Halftoning with dither matrices. (a) Input image. (b) Result of dithering 
with 01. (c) Result of dithering with 02. 
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LISTING 5.1 I Java code to halftone an image using a dither matrix. Indexing the matrix 
with [y%n] [x%n] ensures that thresholds from the matrix are reused in a cyclic manne r. 
This achieves the effect of ti ling the image with the matrix. 

public static Bufferedlmage ditherByMatrix(Bufferedlmage image, int[] [J matrix) { 

int w = image.getWidth()j 
int h = image.getHeight(); 
int n = matrix. length; 

Bufferedlmage ditheredlmage 
new Bufferedlmage(w, h, Bufferedlmage.TYPE_BYTE_BINARY)j 

Raster input ~ image.getRaster()j 
10 WritableRaster output = ditheredlmage.getRaster(); 

" 12 for (int y = OJ Y < hj ++y) 
13 for(intx=O;x<w;++x) 
14 if (input.getSample(x, y. 0) > matrix[y~.nJ [x'l.nJ) 
15 output.setSample(x, y, 0, 1) ; 

17 return ditheredlmage; 

" } 

Error diffusion 

A third halftoning technique is error diffusion. This is aims to correct the errors introduced 
by thresholding. We start by selecting a threshold, typically 128 for images with pixel values 
in a 0- 255 range. Pixels with values less than the threshold will map to 0 (black), whilst 
those with values greater than or equal to the threshold will map to 255 (white). For pixels 
whose original values are close to 0 or 255, this mapping is reasonable, but thresholding 
performs less well for pixels whose values are close to the threshold level. For instance, a 
grey level of 127 would be mapped onto O- an 'error' of 127. Similarly, a grey level of 
128 would be mapped onto 255- also an error of 127. The idea behind error diffusion is 
to spread or diffuse this error to neighbouring pixels. The Floyd-Steinberg algorithm for 
error diffusion distributes the error at any pixel amongst the four neighbours that are ahead 
of that pixel, assuming a top-to-bottom, left-to-right traversal of the image (Figure 5.13). 

Algorithm 5.1 illustrates how Floyd-Steinberg error diffusion is applied to an image. 
Implementation of the algorithm is fairly straightforward. However, if we wish to keep the 
original input image, we must be sure to copy it because it will be modified by the error 
propagation process. Also, we must not attempt to propagate errors beyond the bounds of 
the image. Finally, we must take care not to allow pixel values to fall below 0 or rise above 
255 as a result of error propagation. 

Listing 5.12 shows a Java implementation of the algorithm. An image halftoned by 
error diffusion is shown in Figure 5.14. You can experiment with error diffusion of other 
greyscale images by running the ErrorDiffusion application, provided on the CD. This 
is similar to the Dither application described earlier, in that it can display the greyscaJe 
image or the halftoned image, allowing the user to toggle between them. 
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5.4.2 

7 -
16 

3 5 1 
- - -
16 16 16 

Figure 5.13 Pixels to which quantisation error is dispersed in the Floyd-Steinberg al­
gorithm. The number at each pixel is the proportion of the error that the pixel receives. 

ALGORITHM 5.1 D ithering by Floyd-Steinberg error diffusion. 

threshold = (black + white)/ 2 
for all x and y do 

if f(x , y) < threshold then 
g(x , y) = black 
£ = f(x ,y) -black 

else 
g (x, y) = white 
£ = f(x, y) - white 

end if 
f(x + I, y) = f(x + I, y) + 7£/ 16 
f(x - I,y + I) = f(x - I,y+ 1)+3£1 16 
f(x, y + I) = f (x , y + I) + 5e/ I6 
f(x + I, y + I) = f(x + I, y + I) + £/ 16 

end for 

Colour images 

As we have seen in Section 3.4.2, a CMYK colour model is used for the printing of colour 
images. The colour printer is equipped with cyan, magenta, yellow and black inks and 
prints using each of these in turn. Again, the output produced when we print using anyone 
of the four inks is binary: a blob of ink is either present or absent at any point on the page. 
Consequently, we must use halftoning to represent different proportions of C, M, Y or K 
in a given colour. 

The halftone patterns used to print each of the four inks must be oriented at different 
angles, as shown in Table 5.4. This ensures that the ink dots form a symmetrical pattern 
that can be merged by the human eye into a smooth variation of colour. If the orientation of 
one or more patterns is incorrect, an interference effect known as Moire fringing can occur, 
disrupting our perception of smooth colour variation. 



LISTING 5.12 Java implementation of Algorithm 5.1. 

public static Bufferedlmage errorDiffusionCBufferedlmage image) { 

" 

II Create a binary output image (O=black, l=white) 

int w = image.getWidth() - 1; 
int h = image.getHeight() - 1; 
output Image = new Bufferedlmage(w, h, Bufferedlmage.TYPE_BYTE_BINARY); 

II Copy input image because error diffusion modifies it 

II WritableRaster input = image.copyData Cnull) ; 
12 WritableRaster output = outputlmage.getRaster () ; 
13 final int threshold - 128; 
14 int value, error; 

" 16 for (int Y OJ Y < h; ++y) 
17 for (int x '" 0; x < w; ++x) { 

'" 
" 
" 
" 
" 2l 

" 
" 
" 
" 
" 
" 3Q 

" 
" 
" 
" 
" 
" 
" 
" 
" 
" 
" 
" 
" 

} 

II Threshold pixel value and compute error 

value = input.getSample(x, y, 0); 
if (value < threshold) { 

output.setSample(x, y, 0, 0); /1 set to black 
error = value; 

} 

else { 

} 

output.setSample(x, y, 0 , 1); 
error = value - 255; 

II set to white 

II Disperse error to pixels that are ahead of us 

value = input.getSample (x+1, y. 0); 
input.setSample(x+1. y, 0, clamp(value + 0 .4375f * error» ; 
value = input.getSample (x-1, y+1, 0) ; 
input.setSample (x-1. y+1, O. clamp(value + 0.1875f * error» ; 
value = input.getSample (x, y+1. 0); 
input.setSample(x, y+1. 0, clamp(value + 0.3125f * error»; 
value = input. getSample(x+1, y+1, 0); 
input.setSample(x+1, y+1, 0, clamp(value + 0.0625f * error»; 

44 return output Image ; 

" .. } 

" 
" 49 II Rounds a float to the nearest int between 0 and 255 

" 51 public static int clamp(float value ) { 
~2 return f1ath. min (Math .max(Math. round (value ) , 0), 255); 

" } 
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Figure 5.14 Example of Floyd-Steinberg error diffusion. 

Table 5.4 Orientation of halftone patterns for colour printing. 

Component Orientation 

C J50 
M 750 

Y 00 

K 450 

5.5 Manipulation of pixel data 

5.5.1 Extracting regions of interest 

A region of interest (ROI) is a rectangular area within the image, defined either by the 
coordinates of the pixels at its upper-left and lower-right corners or by the coordinates of 
its upper-left corner and its dimensions. ROls are commonly used to limit the extent of 
image processing operations to some small part of the image. Interactive image processing 
software will often provide the facility to define ROIs of images using the mouse or an 
equivalent pointing device. An example of thi s is the MeanROI application, which displays 
an image, allows the user to draw a ROI on it and then computes mean grey level w ithin 
that ROI (Figure 5.15). Code for MeanROI can be found below the Apps directory on the 
CD. 

lava's Bufferedlmage class has three methods that are useful when operating on ROIs: 

Raster getData(Rectangle reet ) 
void setData(Raster raster) 
Bufferedlmage getSubimage(int x, int y, int w, int h) 

The getDataO method takes as its sale parameter a Rectangle object that specifies the 
position and dimensions of the ROJ. It returns the data from that ROI as a Raster object. 
The data stored wi thin the raster are independent of the image on which getDataO was 
called, so subsequent changes to the image will not affect the raster. However, the raster's 
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I image: 109.329 R.OI· 138.225 

Figure 5.15 The MeanROI application in action. 

coordinate system is that of the original image. This means that the first pixel in the raster 
has the same coordinates as the ROl's origin. We must be careful to take this into account 
when processing raster data. 

Instances of Raster are read-only, but we may cast the object returned by getData 0 to 
a Wri tableRaster if we wish to modify the pixel values. The modified raster can then be 
loaded back into its parent image by invoking the setDataO method of the image, with 
the raster as a parameter. 

If in-place processing of a ROI is required, the getSubimage 0 method of 
Bufferedlmage may be more convenient. Given the coordinates and dimensions of 
the ROI as parameters, this method returns a sub image that shares the same data array as 
the parent image. This means that changes made to pixel values in the subimage will affect 
the parent image. The coordinate system of the subimage is not that of the parent image, 
so its pixels are indexed starting from (0, 0). 

An example of ROI usage can be seen in Listing 5.13. This shows two versions of a 
method meanValueO. The first computes the mean pixel value in the supplied image 
(assumed to be greyscale). The second computes the mean within a RO[ specified by a 
Rectangle object. Notc that there is no need to duplicate any code in the second version 
ofthe method; all that we need to do is invoke getSubimage 0 on the image using the ROI 
parameters contained in the Rectangle object and then pass the image that is returned to the 
first version of mean Value O. Both of these methods are used in the MeanROI application 
described earlier. 



96 Basic image manipulation 

" 

" 

5.5.2 

LISTING 5.13 Example of using a ROI in the calculation of mean grey level. 

public static double meanValue(Bufferedlmage image) { 
Raster raster: image .getRaster(); 

} 

double sum 0.0; 
for (int y = OJ Y < image.getHeight(); ++y) 

for (int x = 0; x < image.getWidth(); ++x) 
sum += raster.getSample (x, y. 0); 

return sum / (image.getWidth()*image.getHeight(»; 

public static double meanValue(Bufferedlmage image, Rectangle roi ) { 
return meanValueCimage.getSubimage(roi.x, roi. y. roi.width, roi.height»; 

} 

Basic geometric manipulation 

Chapter 9 deals with arbitrary geometric transformations of images. Here, we consider some 
special cases which can be implemented in a much more straightforward manner. These 
special cases are: enlargement or shrinkage by an integer factor; rotation by a mUltiple of 
900

; and reflection along the x or y axis. 
Enlarging or shrinking an image can be accomplished by replicating or skipping pixels. 

These techniques can be used to magnify small details in an image, or reduce a large image 
in size so that it fits on the screen. They have the advantage of being fast, but can only 
resize an image by an integer factor. 

To enlarge an image by an integer factor 11 , we must replicate pixels such that eacb pixel 
in the input image becomes an It x 11 block of identical pixels in the output image. The most 
straightforward implementation of this involves iterating over the pixels in the larger output 
image and computing the coordinates of the input image pixel from which a value must be 
taken. For a pixel (x, y) in the output image, the corresponding pixel in the input image is 
at (x /11, y / n). Calculation ofthe coordinates is done using integer arithmetic. Listing 5.14 
shows some code to perform this operation on a Bufferedlmage object. 

To shrink an image by an integer factor 11 , we must sample every nth pixel in the hori­
zontal and vertical dimensions and ignore the others. Again, this technique is most easily 
implemented by iterating over pixels in the output image and computing the coordinates of 
the corresponding input image pixel. Listing 5.15 gives the Java code which performs this 
operation. 

Rotation is relatively simple to implement for the special case where the angle is a multiple 
of 900 and we are rotating about the image centre. Rotations of 90° or 2700 require the 
creation of a new output image, the dimensions of which are transposed relative to the input 
image. A rotation of 1800 can, if necessary, be performed ' in place' (that is, without the 
creation ofa new image to hold the result of the operation). 

Reflection along either of the image axes can also be performed in place. This simply 
involves reversing the ordering of pixels in the rows or columns of the image. Some Java 
code to reflect a Bufferedlmage along the x axis is shown in Listing 5.16. 



Manipulation of pixel data 97 

LISTING 5.14 Java code to enlarge an image by pixel replication. 

public static Bufferedlmage enlarge(Bufferedlmage image, int n) { 

int w = n*image.getWidth( ) ; 
int h = n*image.getHeight(); 
Bufferedlmage enlargedlmage = 

new Bufferedlmage (w, h, image.getType() ) ; 

for ( int y = 0 ; y < h; ++y) 
for ( int x = OJ x < w; ++x ) 

10 enlargedlmage.setRGB (x, y , image.getRGB(x/ n, yin ) ); 

" 
12 return enlargedlmage; 

" " } 

LISTING 5.15 Java code to shrink an image by skipping pixels. 

public static Bufferedl mage shrink (Bufferedlmage image , int n) { 

int w = i mage.getWidth () I n; 
int h = image.getHeight () I n; 
Bufferedlmage shrunk Image = 

new Bufferedlmage (w, h, image.getType()); 

for (int y = 0; y < h; ++y) 
for (int x = 0; x < w; ++x) 

10 shrunklmage.setRGB(x, y, image.getRGB(x*n, yon)); 

" 
11 return shrunk Image ; 

" 
" } 
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" 
" 
" 

" 

" 

5.5.3 

LISTING 5.16 Java code for in-place hOrizontal reflection of an image. 

public static void xReflectionlnPlace(Bufferedlmage image) { 

} 

int w = image.getWidth(); 
int xmax w/2; 

for (int y 0; y < image.getHeight(); ++y) 
for (int x = 0; x < xmax; ++x ) { 

} 

II swap value at (x,y) with its mirror image 

int value = image.getRGB(x, y ) ; 

image.setRGB (x, y, image . getRGB(w-x-l, y)); 
image.setRGB(w-x-l, y, value); 

Arithmetic and logical combination of images 

Expressions constructed from numbers and arithmetic or logical operators are easily under­
stood, but what it means to combine images in this manner is less obvious. The key thing to 
remember is that these operators are applied on pixel-by-pixel basis. So, to add two images 
together, we add the value at pixel (0, 0) in image I to the value at pixel (0, 0) in image 
2 and store the result in a new image at pixel (0.0). Then we move to the next pixel and 
repeat the process, continuing until all pixels have been visited. 

Clearly, this can work properly only if the two images have identical dimensions. Ifthey 
do not then combination is still possible, but a meaningful result can be obtained only in 
the area of overlap. If our images have dimensions of W I x h I and W2 x h2 and we assume 
that their origins are aligned, then the new image will have dimensions W x h, where 

w = min(w \, W2 ), 

" = min(l\\. "2) . 

(5.1 ) 

(5.2) 

In the case of arithmetic operations, we must also ensure that the representation used for 
the output image is appropriate for the operation being performed. For example, the va lues 
produced when we add two 8-bit greyscale images cannot, in general, be contained in an 
8-bit range. 
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Addition and averaging 

If we add two 8-bit greyscale images, then pixels in the resulting image can have values in 
the range 0- 510. We should therefore choose a 16-bit representation for the output image 
or divide every pixel's value by two. If we do the latter, then we are computing an average 
of the two images. We may wish to give more emphasis to one image than the other. This 
can be done by 'alpha blending': 

g(x, y) = all (X, y) + (1 - a)h(x, y). (5.3) 

When a in Equation 5.3 is 0.5, g(x, y) becomes a simple, evenly-weighted average of the 
two input images. It is possible for a to vary; in fact, every pixel of an image can have its 
own a, stored in a separate 'alpha channel'. 

The main application of image averaging is noise removal. Every image acquired by 
a real sensor is afflicted to some degree by random noise. However, the level of noise 
present in the image can be reduced, provided that the scene is static and unchanging, by the 
averaging of multiple observations of that scene. This works because the noise distribution 
can be regarded as approximately symmetrical with a mean of zero. As a result, positive 
perturbations ofa pixel's value by a given amount are just as likely as negative perturbations 
by the same amount, and there will be a tendency for the perturbations to cancel out when 
several noisy values are added. If the noise level in one image is al. then it can be shown 
that the noise level in the average of 11 images will be approximately 

(5.4) 

Figure 5.16 shows a synthetic image with Gaussian random noise added, along with 
averages computed for five and twenty of these images. The noise amplitude in the averaged 
images is visibly less than in the original image. Listing 5.17 gives some Java code to 
compute an average of a set of images, supplied as an array of Buffered Image objects. 

, 

(a) (b) (c) 

Figure 5.16 Averaging of mUltiple observations. (a) Noisy synthetic image. (b) Average 
of five observations. (c) Average of twenty observations. 
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LISTING 5.17 Java code to average a set of images. 

public static Bufferedlmage average(Bufferedlmage[] imgArray) { 

int n = imgArray.length; 
int w = imgArray[O] .getWidth(); 
int h imgArray[O] .getHeight(); 
Bufferedlmage average 

II assume that they all have 
1/ the same dimensions 

new Bufferedlmage(w, h, Bufferedlmage.TYPE_BYTE_GRAY); 

for (int y = 0; y < h; ++y) 
10 f or (int x = 0; x < Wi ++x) { 
II float sum = O.Of; 

" 
" 

" 
16 

} 

for (int i = OJ i < n; ++i) 
sum += imgArray[i] .getRaster().getSample(x, y, 0); 

raster.setSample(x, y, Math,round(sum/n»; 

17 return average; 

19 } 

Subtraction 

Subtracting two 8-bit greyscale images can produce values between -255 and +25 5. This 
necessitates the use of 16-bit signed integers in the output image-unless sign is unimpor­
tant, in which case we can simply take the modulus of the result and store it using 8-bit 
integers: 

g(x, y) = If 1 (x , Y) - hex , Y)I· (5.5) 

The main application for image subtraction is in change detection. If we make two 
observations of a scene and compute their difference using Equation 5.5, then changes will 
be indicated by pixels in the difference image which have nOll-zero values. Sensor noise, 
slight changes in illumination and various other factors can result in small differences which 
are of no significance, so it is usual to apply a threshold to the difference image. Differences 
below this threshold are set to zero. Differences above the threshold can, if desired, be set 
to the maximum pixel value. 

Figure 5.17 shows two frames from a video sequence of a person walking, plus the 
difference between the frames. The difference image has be thresholded and then inverted, 
so black pixels represent points in the image where change was detected. 
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(a) (b) (c) 

Figure 5.17 Two frames from a video sequence and their difference. 

Division 

For division of images to produce meaningful results, fioating-point arithmetic must be 
used. The ratio image can be of the fioating-point type, or we can rescale and round pixel 
values to be in a more convenient 0-255 range. 

This technique can be useful in remote sensing. Here, multispectral instrnments aboard 
aircraft or satellites produce images that show the surface of the EarthS in several spectral 
bands. The ratio of one band to another can be computed. In a ratio image, the effects of 
illumination and surface topography on pixel intensity are reduced and the spectral contrasts 
caused by different surface materials are more prominent [31]. 

AND&OR 

Logical AND and OR operations are useful for the masking and compositing of images. For 
example, if we compute the AND of a binary image with some other image, then pixels 
for which the corresponding value in the binary image is 1 will be preserved, but pixels 
for which the corresponding binary value is 0 will be set to 0 themselves. Thus the binary 
image acts as a 'mask' that removes information from certain parts of the image. 

5.6 Further reading 

Various image file formats are described in an encyclopaedic text by Murray and 
vanRyper [33]. A comparable web resource is the Graphics File Format Page at 
http://www.dcs.ed.ac.uk/-mxr/gfx/index-hi.html. 

General issues relating to image display are given a thorough treatment by Glassner [17]. 
Zukowski [55] describes how images can be displayed using Java's AWT components. 
Knudsen [27] presents updated information on how instances of Buff eredlmage can be 
displayed. Eckstein, Loy and Wood [14] give details of Swing components; the sections 
dealing with JLabel and JScrollPane are perhaps the most relevant to image display. 

5 Or the surfaces of other planetary bodies. 
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Gomes and Velho [19] give a much more detailed account of digital halftoning techniques. 
The classic text is by Ulichney [47]. 

Further information on the applications of image subtraction and image division in remote 
sensing is given by Mather [31]. 

5.7 Exercises 

1. Write a Java program that will 

(a) Display an image 
(b) Allow the user to select a region of interest (ROI) 
(c) Extract this ROI from the image 
(d) Write the ROI to a user-specified file 

(The easiest way of doing this is probably to modify the MeanROI application described 
in Section 5.5 .1.) 

2. Verify by experiment that adding a sequence of noisy observations of a static scene will 
reduce the noise level in the manner predicted by Equation 5.4. 

You can generate experimental data by writing a program that adds random noise of 
a given amplitude to an image. You should use a simple synthetic image similar to that 
in Figure 5.16 for this purpose. To measure noise levels, you will need to compute the 
standard deviation in grey level within a region of the image. (You could modify the 
routines in Listing 5.13 forthis purpose.) You should try to define a relative homogeneous 
region in which to make measurements. (Why?) 

3. Write a Java program that subtracts two images and thresholds the absolute value of 
the difference in grey level at each pixel. Test the program with images taken from a 
sequence of some kind and see if you can identify the limitations of this approach for 
the detection of change or motion. 
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This chapter describes variolls techniques for modifying pixel grey level and colour. 
These operations are sometimes referred to as 'point processes' because they recal­
culate the value of each pixel independently of all other pixels. J# shall concentrate 
on the manipulation of grey level here; colour processing will be considered briefly 
at the end of the chapter. 

6.1 Introduction 

Some of the simplest, yet most useful, image processing operations involve the adjustment 
of brightness, contrast or colour in an image. A common reason for manipulating these 
attributes is the need to compensate for difficulties in image acquisition. For example, 
in images where an object of interest is backlit, that object can be underexposed almost 
to the point of being a silhouette. Without the aid of image processing, we might need to 
reacquire the image several times, adjusting the exposure each time until satisfactory results 
are obtained. With image processing, however, we can increase the overall brightness of 
the object of interest and magnify the tiny residual variations in contrast across it, thereby 
revealing enough detail to allow proper interpretation. 

103 
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6.2 Grey level mapping 

6.2.1 Linear mapping 

We can adjust the overall brightness of a greyscale image simply by adding a constant bias, 
b, to pixel values: 

g(x, y) = f(x, y) + b. (6.1 ) 

If b > 0, overall brightness is increased; if b < 0, it is decreased. Figure 6. I shows an 
example of biasing pixel grey levels in this way. Similarly, we can adjust contrast in a 
greyscale image through mUltiplication of pixel values by a constant gain, a: 

g(x, y) = af(x, y) . (6.2) 

If a > 1, contrast is increased, whereas if a < 1 it is reduced. An example is given in 
Figure 6.2. 

, 

(a) (b) 

Figure 6.1 Image brightness modification. (a) A dark image. (b) Result of adding 150 
to pixel values. 

Equations 6. I and 6.2 can be combined to give a general expression for brightness and 
contrast modification: 

g(x, y) = af(x, y) + b. (6.3) 

Often, we do not want to specifY a gain and a bias, but would rather map a particular range 
of grey levels, [II, h ], onto a new range, [gl , g2]. This form of mapping is accomplished 
using 

(
g, -gl ) 

g(x, y) = 81 + f; _ f1 [f(x , y) - II], (6.4) 
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Grey level mapping lOS 

Figure 6.2 Result of multiplying pixel values of the image in Figure 6.1 (a) by 2.5. 

It is easy to show that Equations 6.3 and 6.4 are equivalent to a linear mapping of pixel 
grey level. This can be seen clearly if we plot output grey level versus input grey level, as 
in Figure 6.3(a). When dealing with 8-bit images, the mapping must produce values in the 
range 0- 255. Consequently, a real mapping function may contain horizontal segments, as 
in Figure 6.3(b). 

There are two special cases of linear mapping that are worthy of note. In the first, we 
increase the gain factor until two adjacent grey levels, 11 and fl , are mapped onto the 

1 
1 1 
1f, 1 f, 

(a) 

g, - g, 

f, - f, 

f 

g 

255 - - - - - - - - - - - - - - - - -r---, 

°O~--L---------~--'f 255 
(b) 

Figure 6.3 Linear grey level mapping. (a) Graphical representation of gain and bias. 
(b) Forcing output values to lie in a 0-255 range. 
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extremes of the 8-bit range (Figure 6.4(a)). Consequently, grey levels up to and including 
II are mapped onto 0, whereas grey levels greater than II are mapped onto 255. We 
can say that II acts as a threshold. The mapping operation is then termed thresholding. 
Figure 6.4(b) shows the result of thresholding the image in Figure 6.2 at a level of 128. 

9 

255 - - -- --- -- --- -,----, 

OL.----~----'-_ o f, f 

(a) (b) 

Figure 6.4 Grey level thresholding. (a) Mapping function for a thresholding operation. 
(b) Result of thresholding the image of Figure 6.2 at a level of 128. 

The second special case of linear mapping is where G, the gain factor applied to grey 
levels, is negative. Figure 6.5(a) plots the mapping function of Equation 6.2 for a = -I 
and b = 255. Figure 6.5(b) shows the result of applying this mapping to the image of 
Figure 6.2. This operation is often described as negation or inversion. 

Implementation in Java 

It is a simple matter to write Java code that applies Equations 6.3 or 6.4 to an image. 
Examples appear in Listing 6.1. We follow the approach introduced in Chapter 5, whereby 
each operation is implemented as a static method. The first method (lines 1- 12) implements 
Equation 6.3. It is overloaded with another version (lines 14-19) that implements Equa­
tion 6.4. This version merely computes a gain and a bias from the parameters fl. h , gl, g2 
of Equation 6.4 and then invokes the primary method to do the rescaling. Some other points 
to note are 

• It is assumed that the input image is an 8-bit greyscale image. 

• No validation of parameters f2 and fl is carried out; there will be an 
ArithmeticException if they are equal. 

• Both methods return a new image; however, we could equally perfonn the operation in 
place. This is possible because the remapping of grey level is a point process in which 
calculations at any pixel are independent of all other pixels. 
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Figure 6.5 Image negation. (a) Mapping function for negation. (b) Negation of image in 
Figure 6.2. 

LISTING 6.1 Java code to do linear nescaling of gney levels in an image. 

public static Bufferedlmage rescale(Bufferedlmage image, float gain, float bias) { 
int w : image.getWidth(); 
int h : image.getHeight(); 
Bufferedlmage rescaled Image 

new Bufferedlmage(v, h, Bufferedlmage.TYPE_BYTE_GRAY); 
WritableRaster input '" image.getRasterC); 
WritableRaster output '" rescaledlmage.getRaster(); 
for (int y = 0; y < hj ++Y) 

for (int x c 0; X < w; ++x) 
10 output.setSampleex. y, D, clamp(gain*input.getSample (x, y. 0) + bias»; 
II return rescaledlmage; 

" } 

" H public static Bufferedlmage rescale(Bufferedlmage image , int fl, int £2, 
15 int gl, int g2) { 
11> float gain '" «float) (g2 - gl) / (£2 - f1); 
17 float bias'" gl - gain*fl; 
18 return rescale ( image, gain, bias); 

" } 

" 22 public static int clamp(float value) { 
n return Math,min(Math ,max(Math,round(value), 0), 255) ; 

" } 
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The Java2D API provides a limited range of built-in image processing operations. One 
of the operations is linear mapping using gain and bias parameters. The operation is 
implemented in the form of a class named RescaleOp. The constructors of RescaleOp 
are 

public RescaleOp(float gain, float bias, RenderingHints hints) 
public RescaleOp(float(] gain, float(] bias, RenderingHints hints) 

The second constructor is used to create a RescaleOp for colour images; it expects an array 
of three gains and an array of three biases. 

Using a RescaleOp is straightforward. For example, suppose we wish to brighten an 
image by a factor of two. This can be accomplished with two lines of code: 

RescaleOp rescale = new RescaleOp(2.0f, 0, null); 
Bufferedlmage newlmage = rescale.filter(image, null); 

lfwe already have an image of the correct dimensions and type, we can use it as the second 
parameter of RescaleOp's filter method, instead of null. We can also do in-place 
processing by using the same image for both parameters: 

RescaleOp rescale = new RescaleOp(2.0f, 0, null); 
rescale.filter(image, image); 

RescaleOp, in common with the other image processing operations supported in the 
Java2D API, implements the BufferedImageOp interface. Classes implementing this 
interface must define the following methods: 

BufferedImage filter (BufferedImage sre, BufferedImage dest) 
BufferedImage createCompatibleDestImage(BufferedImage src, 

ColorModel model) 
Rectangle2D getBounds2D(BufferedImage sre ) 
Point 2D getPoint2D(Point2D srcPoint, Point2D destPoint) 
RenderingHints getRenderingHints() 

The fil t erO method performs the image processing operation. The method 
createCompatibleDestImage () creates an image that is compatible with the given 
source image and colour model. If model is null, the colour model of the source image 
is used. The method getBounds2DO returns a Reetangle2D indicating how big the 
destination image would be if the given source image were to be processed. The method 
getPoint2DO specifies what happens to a given point in the source image. For operations 
which do not affect image geometry, such as those described in this chapter, the method 
should simply copy srcPoint to destPoint. The getRenderingHints 0 method 
returns the rendering hints associated with an operation. Rendering hints help lava's 
rendering engine to decide how it should display an image. This method can return null 
if there is no guidance to offer the rendering engine. 

Writing image processing code as a class that implements the BufferedImageOp in­
terface has two advantages. The first is consistency with the predefined operations pro­
vided with Java2D. The second benefit is polymorphism; if we create a class that imple­
ments this interface, it will automatically work with existing Java code that manipulates 
BufferedImageOp objects. We have already encountered one example ofthis: the version 
of draw Image 0 that takes a Buff eredImageOp as a parameter and applies this operation 
to an image before drawing it (Section 5.3). 
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Non-linear mapping 

We need not restrict ourselves to a linear mapping of grey levels. We may use any function, 
provided that it gives a one-to-one or many-to-one mapping of input grey level onto output 
grey level: in other words, the function must be single-valued. Figure 6.6 shows a mapping 
that does not satisfy this requirement, and therefore cannot be used for brightness and 
contrast modification. 

Non-linear mapping functions have a useful property. The gain, a, applied to input grey 
levels-as measured by the slope of a tangent to the function--<:an vary. Thus the way in 
which contrast is modified depends on input grey level. This is illustrated by Figure 6.7, 
which plots a logarithmic mapping of input grey level onto output grey level. Two ranges 
of input grey level, b.!, and b.h, of equal width, are shown. Range b.!" which occurs at 
low grey levels, is mapped onto a wider range, b.g,: thus, contrast is increased. However, 
at the high end of the scale, b.g2 < b.h-so contrast is reduced here. 

In general, logarithmic mapping is useful if we wish to enhance detail in the darker 
regions of the image, at the expense of detail in the brighter regions. Figure 6.8 shows a 
poorly exposed image of a car, whose number plate is difficult to read. It also shows the 
results of logarithmic and linear mapping applied to that image. Both operations have made 
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Figure 6.6 An inappropriate function for grey level mapping. Does f, map onto g I or 
g2? 
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Figure 6.7 A logarithmic mapping function. 
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Figure 6.8 Example of logarithmic mapping. Top: an underexposed image. Bottom 
left: result of logarithmic mapping, making the number plate readable. Bottom right: an 
attempt to achieve similar results wi th linear mapping. 

the number plate readable, but the logarithmic mapping has been less detrimental to the 
other parts of the image. 

An exponential mapping of grey level can also be useful. Here, the effect is the reverse 
of that obtained with logarithmic mapping; contrast in the brighter parts of an image is 
increased at the expense of contrast in the darker parts. We can see this in Figure 6.9 , where 
L'.gl < L'.fl and L'.g2 > L'./2. 

9 
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Figure 6.9 An exponential mapping function. 
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Efficient implementation of mapping 

Let us suppose that we wished to carry out a non-linear transformation of grey levels using 
a square-root function. Algorithm 6.1 shows how we might perform this task for an image 
quanti sect using b bits per pixeL Square roots are scaled so that the operation maps zero 
onto zero and the maximum grey level onto itself. For an image of dimensions N x N, 
the algorithm performs N 2 multiplications and N 2 square-root calculations. The latter, in 
particular, are very time-consuming. 

ALGORITHM 6.1 An inefficient method for grey level mapping. 

Define a scaling factor a = .J2b=I 
for all pixel coordinates, x and)l , do 

g(x, y) = a.jf(x , y) 
end for 

For many image types, the approach adopted by Algorithm 6.1 is grossly inefficient. In 
the case of S-bit images, there are only 256 possible grey levels, and hence just 256 possible 
mappings. It makes little sense, therefore, to calculate the mapping many thousands, or 
even millions, of times; instead, we can perform the calculations 256 times, once for each 
possible grey level, and store the results in a look-up table (LUT). We can then cycle through 
all the image pixels and carry out the mapping simply by looking up the appropriate result 
in the table. Algorithm 6.2 demonstrates this new approach. 

ALGORITHM 6.2 Efficient grey level mapping using a look-up table. 

Define a scaling factor a = .J2b=I 
Create an array table with space for 2b elements 
for all grey levels, i , do 

tab/eU ] = a.ji 
end for 
for all pixel coordinates, x and y, do 

g(x, y) = tab/e[f(x, y)] 
end for 

We can do some experiments to measure the performance of these two algorithms in 
real Java programs. Timing can be done using the currentTimeMillis 0 method of the 
standard System class. This method returns the current time in milliseconds since midnight 
on 1 January 1970. To measure the approximate! execution time of a piece of code, we 
can precede and follow that piece of code with calls to System. currentTimeMillis () 
and compute the difference between the two numbers that are returned. We have created 

I Timing done this way is approximate because it measures total system time, not the amount of CPU time devoted 
10 this onc program. 
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a class called Interval Timer, available in the com. pearsoneduc. ip. util package on 
the CD, to make this task even easier. Timing a piece of code is as simple as this: 

IntervalTimer timer = new IntervalTimer(); 
timer. start 0 ; 
II some code to be timed 
System.out.println(timer.elapsed()); 
II more code to be timed 
Sytem.out.println(timer.stop()); 

II doesnlt stop the clock 

II stops clock 

The program MapTestl on the CD uses an Interval Timer to measure the performance 
of both the direct calculation and LUT approaches to the remapping of grey levels using 
a square-root function. The program simulates processing of an N x N -pixel image. The 
value of N is specified as a command line parameter. The image itself is simulated using 
an array of integers. Some results from this program are plotted in Figure 6.10. These 
were generated on a 266 MHz Pentium II machine running Windows 95 and JDK 1.2 with 
just-in-time (IIT) compilation enabled. (Turning JIT compilation off increases all times by 
a factor often or more.) 
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Figure 6.10 Performance of direct calculation and LUT techniques. 

The significant improvement in performance that we see when using Algorithm 6.2 occurs 
because the number of grey levels is much less than the number of pixels being processed, 
and because the process of table look-up (which, in practice, merely involves accessing an 
array element) is very much faster than calling a maths library function to calculate a square 
root. In general. for an N x N x b-bit image, LUTs are worth using if 

(6.5) 

Essentially, Figure 6.10 compares repeated invocation of a maths library function with 
the look-up of values in an array. A more realistic performance assessment would involve 
the use ofreal Bufferedlmage objects. The program MapTest2 does this. Results from 
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this program, using the same hardware as before, are summarised in Figure 6.11. The 
performance gain from using a LUT is not so pronounced with real images, being masked 
somewhat by the overhead of manipulating Bufferedlmage objects-but we can still 
reduce execution times by at least a factor of two if we use a LUT to map grey levels. 
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Figure 6.11 Comparison of direct calculation and LUT techniques applied to real im­
ages. 

Java classes to perform look-up table operations 

The lava2D API provides a LookupOp class, implementing the Buff eredlmageOp interface 
as discussed in Section 6.2.1. LookupOp objects are constructed as follows: 

public LookupOp(LookupTable table, RenderingHints hints) 

LookupTable is an abstract base class used to represent LUTs. LookupOp objects require an 
instance of one of Lookup Table 's subclasses: ByteLookupTable or ShortLookupTable 
from the java. awt. image package. We can pass in null for the RenderingHints 
parameter. 

The following code fragment shows how we can invert an image using ByteLookupTable 
and LookupOp: 

byte[] table = new byte [256] ; 
for (int i = 0; i < 256; ++i) 

table[i] = (byte)(255-i); 
ByteLookupTable invertTable = new ByteLookupTable(O, table); 
LookupOp invertOp = new LookupOp(invertTable, null); 
Bufferedlmage invertedlmage = invertOp.filter(image, null); 

Similar code can be used to threshold an image, apply a non-linear mapping, etc. In each 
case, the procedure is the same; we set up an array of bytes containing the LUT data, 
create an instance of Byte Lookup Table from these data, create an instance of LookupOp 
using the ByteLookupTable and then, finally, invoke the filter method of LookupOp 
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to process the image. We can simplify the application of a LookupDp to an image if we 
develop a class that carries out this common set of tasks. This class can then be extended 
by subclasses that generate the LUT entries appropriate to particular shapes of mapping 
function--e.g. , linear, square-root, logarithmic, etc. 

Figure 6.12 shows the design for a class GreyMapOp that supports grey level mapping op­
erations using look-up tables. The basis for GreyMapOp (and, indeed, for many of the image 
processing classes described in subsequent chapters) is StandardGreyOp. This class im­
plements the BufferedImageOp interface, thereby providing the basic methods to process 
an 8-bit greyscale image. The implementations of getBounds2DO and getPoint2DO 
assume that the operation does not affect the geometry of the image. The implementa­
tion of the filterO method merely copies the input image; subclasses must override 
this method if they are to change the image in any way. StandardGreyDp provides 
one additional method, checkImage 0, which can be called from within the filter 0 
method of a subclass to test whether the input image is suitable for processing. The 
checkImage 0 method throws an ImagingDpException if the input image is not of type 
BufferedImage. TYPE_BYTE_GRAY. Listing 6.2 shows the implementation of the class. 

I 
I 

<<i nterface» 
BufferedlmageOp 

StandardGreyOp 

Greyr>lapOp 
{abstract} 

, byte[] table 

.. lnt getTableEntry(;nt 1) 
t void setTableEntry(int i, l nt value) 
.. void compute.'ofapping(1nt 1ow. 1nt high) 

I 
LinearOp I I 

I !nvertOp I I LogOp 

I SquareRootOp J 

I 
ExpOp I 

I 

Figure 6.12 UML diagram showing relationships between classes that perform grey 
level mapping of images. 
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LISTING 6.2 A Java class to support processing of S·bit greyscale images. 

package com.pearsoneduc,ip .op; 

import java.awt.RenderingHints; 
import java.awt.geom .• j 
import java.ayt.image.*; 

public class StandardGreyOp implements BufferedlmageOp { 

public Bufferedlmage filter(Bufferedlmage STe, Bufferedlmage dest) { 
10 checklmage(src) j 

11 if (dest == null) 
12 dest '" createCompatibleDestlmage(src. null); 
1) WritableRaster raster = dest.getRaster(); 
1 ~ src. copyData(raster) ; 
15 return dest; 

" } 

" 18 public Bufferedlmage createCompatibleDestlmage(Buffered lmage STe, 
19 ColorModel destfolodel) { 
20 if (destModel == null) 
21 dest}lodel = src. getColorModel () ; 
n int width'" src.getWidthO j 

23 int height = src.getHeight(); 
2~ BUfferedlmage image· new Bufferedlmage(destModel, 
25 destModel.createCompatibleWritableRaster(width , height), 
26 destModel.isAlphaPremultiplied(), null) ; 
27 return image; 
:!s } 

" 30 public Rectangle2D getBounds2D(Bufferedlmage src) { 
31 return src . getRaster().getBounds() ; 
J2 } 

" ~ public Point2D getPoint2D(Point2D srcPoint, Point2D destPoint} { 
3S if (destPoint == null) 
36 destPoin"t = new Point2D. Floa"t () ; 
37 destPoint.setLocation(srcPoint.getX(), srcPoint.getY())i 
38 return destPoint; 

" } ., 
41 public RenderingHints getRenderingHints() { 
42 return null; 

" } 
~ 

45 public void checklmage(Bufferedlmage src) { 
46 if (src.getType() != Bufferedlmage .TYPE_BYTE_GRAY) 
47 throw new ImagingOpException("operation requires an 8-bit grey image"); .. } .. 
" } 
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GreyMapOp extends StandardGreyOp, adding an array of bytes to hold LUT data and 
providing methods to retrieve and modify LUT entries. It also overrides filter() with 
an implementation that applies the stored LUT to an image. However, it cannot generate 
entries for the LUT. The method which does this, computeMapping (), is abstract. We 
therefore cannot create instances of GreyMapOp. To perform a specific operation, we must 
define a subclass of GreyMapOp that implements the computeMappingO method. The 
method takes two parameters, both integers, representing the lower and upper limits of the 
mapping. Grey levels at or below the lower limit should be mapped onto 0 and grey levels 
at or above the upper limit should be mapped onto 255. An implementation of the method 
needs access to the LUT itself, so the array of bytes is a protected instance variable of 

LISTING 6.3 A Java class to perform mapping of grey levels in an image. 

package com.pearsoneduc.ip.OPi 

import java.awt.image .j 

public abstract class GreyMapOp implements BUfferedlmageDp { 

protected byte[] table = new byte[256]; 

public int getTableEntryCint i) { 
10 if (table[i] < 0) 
JJ return 256 + (in1:) table [i] i 
12 else 
13 return (int) table [i] ; 

" } 

16 protected void setTableEntry(int i , int value) { 
17 if (value < 0) 
18 table [i) ,. (byte) 0; 
19 else if (value> 255) 
2(1 table (i) (byte) 255; 
21 else 
u table[i] - (byte) value; 
n } 

" 25 public void computeMapping() { 
26 computeMapplng(O. 255); 

" } 

29 public abstract void computeMapping(int low, int high); 

" 31 public Bufferedlmage filter(Bufferedlmage src , Bufferedlmage dest) { 
32 checklmage(src); 
II if (des t == null) 

" 
" 
" 

dest ; createCompatibleDestlmage(src. null); 
LookupOp operation = new LookupDp(new ByteLookupTable(O, table), null); 
operation.filter(src, dest); 

37 return dest; 

" } 

" } 
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GreyMapOp (as indicated by the # to its left in Figure 6.12). For convenience, LUT entries 
can also be modified by the setTableEntry () method, which clamps values to a 0--255 
range. This is also protected. Listing 6.3 shows the implementation of GreyMapOp. 

Figure 6.12 shows five subclasses which implement the different shapes of mapping 
function described thus far in this chapter. Listing 6.4 shows the implementation of one 
of these subclasses, LinearOp. All of the classes shown in Figure 6.12 are part of the 
com. pearsoneduc. ip. op package, available on the CD. 

LISTING 6.4 A subclass of GreyMapOp that applies a linear grey level mapping function 
to an image. 

package com.pearsoneduc.ip.op; 

public class LlnearOp extends GreyMapOp { 

public LinearOp() { 
computeMapping(); 

} 

10 public LinearOp(int 10 ..... in't high) { 
Ii computeMapplngClo ..... high); 

" } 
u 
14 public void computeMapping(int low, int high) { 
15 if (low < 0 I I high > 255 I [ low >= high) 
16 throw new java. awt. image. ImagingOpException( II invalid mapping limits" ); 
17 float scaling = 255.0f I (high - low); 
18 for (int i ., 0; i < 256; ++i) 
19 setTableEntry(i, Math,round(scaling*(i - low))); 

" } 

22 } 

Grey level mapping applications 

GreyMapOp and its subclasses are used in two grey level mapping applications supplied 
on the CD. The first application, called GreyMap, has a command line interface. It takes 
filenames for the input image and output image as the first two command line arguments, 
followed by a string to indicate which operation must be performed, and (optionally) lower 
and upper limits that will be mapped onto 0 and 255, respectively. [flower and upper limits 
are not specified, the program scans the input image to find the minimum and maximum 
grey levels, and uses these as the lower and upper limits. For example, to linearly 'stretch' 
the range of grey levels in an image, such that the minimum and maximum become 0 and 
255 , we would simply enter 

java GreyMap in.jpg out . jpg linear 

Alternatively, to perform a logarithmic mapping of[IO, 220] onto [0, 255], we would type 

java GreyMap in.jpg out.jpg log 10 220 
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It is sufficient to enter the first few letters of the operation name: lin for linear mapping, 
inv for inverted linear, sq for square-root, log for logarithmic and exp for exponential. 

The second application, GreyMapTool, is an interactive version of Grey Map. It presents 
the user with an interface in which an image is displayed and different grey level mapping 
operations can be selected and applied to that image. The mapping function is plotted and 
the lower and upper limits can be adjusted with sliders. Figure 6.13 shows this program in 
action. 

mIlGreyMapTool: .. I .. /lmages/mattgrey jpg IlllIiIEJ 
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Figure 6.13 An interactive grey level mapping tool. 

6.3 Image histograms 

The histogram of an image records the frequency distribution of grey levels in that image. 
The histogram of an 8-bit image, for example, can be thought of as a table with 256 entries, 
or 'bins' , indexed from 0 to 255. In bin 0 we record the number of times a grey level of 
o occurs; in bin I we record the number of times a grey level of I occurs; and so on, up 
to bin 255. Algorithm 6.3 shows how we can accumulate a histogram from image data. 
Figure 6.14 shows an image and its histogram computed using this algorithm. 

Closely related to the histogram of an image is its cumulative histogram, which records 
the cumulative frequency distribution of grey levels in an image. The cumulative frequency 



ALGORITHM 6.3 Calculation of an image histogram. 

Create an array histogram with 2b elements 
for all grey levels, i, do 

histogram[i] = 0 
end for 
for all pixel coordinates, x and y, do 

Increment histogram[f(x, y) ] by I 
end for 
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Figure 6.14 An image and its histogram. 
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of a grey level, i, is the number of times that a grey level less than or equal to i occurs in 
an image. Cwnulative frequencies, Cj. are computed from histogram counts, hj, using 

(6.6) 

Figure 6.15 plots the cumulative frequency distribution for grey levels in the image of 
Figure 6.14. 
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Figure 6.15 Cumulative histogram of the image in Figure 6.14. 

We can normalise a histogram by dividing the counts in each bin by the total number 
of pixels in the image associated with that histogram. This gives us a table of estimated 
probabilities. The entry for any grey level tells us the likelihood of finding that grey level 
at a pixel selected randomly from the image. Similarly, a normalised cumulative histogram 
is a table of cumulative probabilities. Here, bin i stores the probability of encountering a 
pixel grey level less than or equal to i at a randomly selected pixel. Ordinarily, it is sufficient 
to work with raw frequencies in a histogram. However, probabilities should be used when 
comparing the histograms of images with different sizes. 

The histogram of an image provides a useful indication of the relative importance of 
different grey levels in an image; indeed, it is sometimes possible to determine whether 
brightness or contrast adjustment is necessary merely by examining the histogram, and not 
the image itself. However, we must be wary of overinterpreting histograms. Consider, for 
example, the histogram of Figure 6.14. There are three distinctive features to be seen: a small 
peak between 50 and 100; a larger peak between 100 and 150; and an even larger narrow 
peak close to 200. On examining the image from which this histogram was computed, 
we see an apparent correspondence between the first peak and the body of the aircraft. 
Similarly, it appears that the second and third peaks correspond to the sky and the clouds, 
respectively. However, correspondences between image features and histogram features 
applies to particular images and flot to images in general. This is evident from Figure 6.16, 
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Figure 6.16 Non-uniqueness of a histogram. (al A histogram. (b) An image with (al as 
its histogram. (e) A different image, also with (al as its histogram. 

which shows two very different images that have identical histograms. Although a histogram 
gives us the frequency distribution of grey levels in an image, it can tell us nothing about 
the way in which grey levels are distributed spatially. 

Grey level mapping operations affect the histogram of an image in predictable ways. 
For example, adding a constant bias to grey levels will shift a histogram along the grey 
level axis without changing its shape. Multiplication of grey levels by a constant gain will 
spread out the histogram evenly if a > I, increasing the spacing between occupied bins, or 
compress it if a < I, which can have the effect of merging bins. A non-linear mapping of 
grey levels will stretch some parts of the histogram whilst compressing other parts. This 
can be seen in Figure 6.17, which plots histograms for the dark car image of Figure 6.8 and 
the logarithmically-enhanced version of that image. 
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Figure 6.17 Effects of grey level mapping on a histogram. (a) Histogram of original 
image from Figure 6.S. (b) Histogram of logarithmically-enhanced image. 

6.3.1 Computing histograms in Java 

The lava2D API does not provide a histogram class; however, it is a simple matter to devise 
our own. Our basic requirement is for a class that implements Algorithm 6.3. It should also 
compute cumulative frequencies, using Equation 6.6. It would be useful if the class could 
handle colour images as well as greyscale images. (This is easily done; we simply need to 
create three separate histograrns----one for the red channel, one for green and one for blue.) 
Another useful feature would be some form of input/output capability, allowing histogram 
data to be read from and written to streams. 

The Histogram class, available on the CD as part of the com. pearsoneduc. ip. op 
package, satisfies these requirements. Selected methods from this class are listed in 
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Table 6.1 Selected methods of the Histogram class. 

Method Description 

HistogramO Constructs an empty histogram. 

Histogram(Reader src) Constructs a histogram by reading data from the 

specified source. 

HistogramCBufferedlmage img) 

Object cloneO 

boolean equals{Object otherHist) 

void computeHistogramCBufferedlmage img) 

void read(Reader src) 

void write(Writer dest) 

void writeCumulative(Writer dest) 

boolean sourceIsGrey() 

int getNumBands() 

int getNumSamples() 

int getFrequencyCint value) 

int getCumulativeFrequency(int value) 

int getMinFrequency() 

int getMaxFrequency() 

int getMinValue() 

int getMaxValue() 

double getMeanValue() 

Constructs a histogram from the specified image. 

Returns a copy of this histogram. 

Compares this histogram with another. 

Computes a histogram oflhe specified image. 

Reads histogram data from the specified source, 

Writes histogram frequencies to the specified des­

tination. 

Writes cumulative frequency data to the specified 

destination. 

Indicates whether the data source for this histogram 

was a greyscaJe image or not. 

Returns number of bands in histogram: I for 

greyscale images, 3 for colour images. 

Returns number of samples in histogram, equivalent 

to the number of pixels in the source image. 

Returns the frequency of occurrence ofthe specified 

value. 

Returns cumulative frequency for the specified 

value. 

Returns smallest frequency recorded in histogram. 

Returns largest frequency recorded in histogram. 

Returns minimum value for which counts have been 

recorded. 

Returns maximum value for which counts have been 
recorded. 

Returns mean value of this histogram. 

Table 6.1. (This list is not exhaustive; formanyofthe 'get' methods, there are two versions­
one for colour images, in which the band has to be specified as the integer 0, 1 or 2, and 
one for greyscale images. The table lists only the greyseale version.) 

The Histogram class forms the basis oftwo applications included on the CD: CalcHist 
and HistogramTool. CalcHist accepts two or three command line arguments. The first 
is the filename of an image; the second is an output filename for the histogram of that image; 
the third, which is optional, is an output filename for the cumulative histogram ofthat image. 
The output data files have a simple text-based format, consisting of a single comment line 
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I \/alue 118 : I freq 643 cum freq 29880 ; 

Figure 6.18 The HistogramTool application. 

(beginning with #) followed by frequency or cumulative frequency data, one value per 
line. If the image is a colour image, three columns of data are written, corresponding to 
frequencies (or cumulative frequencies) in the red, green and blue bands of the image. 

The HistogramTool application is an interactive tool for the display and interrogation 
of histograms. It can be executed with or without an image filename as a command line 
argument. A menu is provided, from which you can load a new image from a file, save the 
histogram data to a file or exit the program. As the cursor is moved over the histogram, 
an information panel is updated with the grey level, frequency and cumulative frequency 
at the current cursor position. The program can handle both greyscaJe and colour images. 
In the case of colour images, a tabbed display is created, allowing the view to be switched 
between the red, green and blue bands. Figure 6.18 shows the program in action. 

6.4 Histogram equalisation 

We can use the histogram of an image to define a non-linear mapping of grey levels, specific 
to that image, that will yield an optimal improvement in contrast. This technique, known 
as histogram equalisation, redistributes grey levels in an attempt to flatten the frequency 
distribution. More grey levels are allocated where there are most pixels. fewer grey levels 
where there are fewer pixels. This tends to increase contrast in the most heavily populated 
regions of the histogram, and often reveals previously hidden detail. 

If we are to increase contrast for the most frequently occurring grey levels and reduce 
contrast in the less popular part of the grey level range, then we need a mapping function 
which has a steep slope (a > I) at grey levels that occur frequently, and a gentle slope (a < I) 
at unpopular grey levels. The cumulative histogram of the image has these properties, as a 
comparison of Figures 6.14 and 6.15 demonstrates. Indeed, the mapping function we need 
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is obtained simply by rescaling the cumulative histogram so that its values lie in the range 
0- 255. Algorithm 6.4 shows how this works in practice. From the histogram of the image, 
we determine the cumulative histogram, c, rescaling the values as we go so that they occupy 
an 8-bit range. In this way, e becomes a look-up table that can be subsequently applied to 
the image in order to carry out equalisation. 

ALGORITHM 6.4 Histogram equalisation. 

Compute a scaling factor, a = 255 / number of pixels 
Calculate histogram using Algorithm 6.3 
e[O] = ct * histogram[O] 
for all remaining grey levels, i , do 

eli] = c[i - 1] + a * histogram[i] 
end for 
for aU pixel coordinates, x and y, do 

g(x, y) = c[f(x , y)] 
end for 

Figures 6.19 and 6.20 show an image and its histogram, before and after equalisation, 
respectively. The operation has clearly had a significant effect on contrast, yet flattening of 
the histogram seems not to have been achieved. Why is this? 

4000 

3500 

3000 

>- 2500 

I 
~ 
g: 2000 
~ 

.1: 1500 

1000 I I 
500 

0 
0 50 100 150 200 250 

grey!evel 

Ca) (b) 

Figure 6.19 (a) An unequalised image. (b) Its histogram. 

A flat histogram for an N x N, 8-bit image would need to have N 2/ 256 counts in 
each bin. Adjacent bins in the input histogram which have fewer than N 2/ 256 counts are 
amalgamated into a single output bin, thereby leaving some bins in the output histogram 
unoccupied. Ifwe could spl it bins whose counts were too high into smaller bins to fill these 
spaces, then the histogram would be literally flattened. However, if we did this, it would 
no longer be possible to implement equalisation as a straightforward grey level mapping 
operation using a look·up table. What happens instead is that the gaps between occupied 
bins vary in size, there being less crowding in the vicinity of bins containing high counts. 
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Figure 6.20 (a) An equalised image. (b) Its histogram. 

This ensures that the cwnulative frequency distribution approximates the ideal straight line 
as closely as possible (Figure 6.21). Thus, rather than saying that equalisation flattens a 
histogram, it is more accurate to say that it linearises or straightens the cumulative frequency 
distribution. 

A more sophisticated implementation of histogram equalisation might split a single input 
grey level into several output grey levels, but we would then need some means of choosing 
one of these output levels. One approach is to make a random selection; another is to select 
for a pixel the grey level that is most consistent with neighbouring grey levels. The added 
complexity of these techniques means that they are rarely applied. 

Histogram equalisation is used widely in image processing-mainly because it is a com­
pletely automatic technique, with no parameters to set. At times, it can improve our ability 
to interpret an image dramatically. However, it is difficult to predict how beneficial equal­
isation will be for any given image; in fact, it may not be of any use at all. This is because 
the improvement in contrast is optimal statistically, rather than perceptually. In images 
with narrow histograms and relatively few grey levels, a massive increase in contrast due 
to histogram equalisation can have the adverse effect of reducing perceived image qual­
ity. In particular, sampling or quantisation artefacts and image noise may become more 
prominent. 

Histogram equalisation becomes histogram specification if, instead of requiring a flat 
histogram, we specify a particular shape explicitly. We might wish to do this in cases where 
it is desirable for a set of related images to have the same histogram-in order, perhaps, 
that a particular operation produces the same results for all images. 

Histogram specification can be visualised as a two-stage process. First, we transform 
the input image by equalisation into a temporary image with a flat histogram. Then we 
transform this equalised, temporary image into an output image possessing the desired 
histogram. The mapping function for the second stage is easily obtained. Since a rescaled 
version of the cumulative histogram can be used to transform a histogram with any shape 
into a flat histogram, it follows that the inverse of the cumulative histogram will perform 
the inverse transformation from a flat histogram to one with a specified shape. 
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Figure 6.21 Top: cumulative histogram of the unequalised image in Figure 6.19. Bot­
tom: cumulative histogram of the equalised image in Figure 6.20. 

6.4.1 Histogram equalisation in Java 

Implementing histogram equalisation in Java is trivial if we make use of the classes that we 
have already developed. Since the operation is performed using a look-up table, we can 
implement it as a class EqualiseOp that extends GreyMapOp. All we need to do is add 
the code that computes look-up table entries. For this, we use the Histogram class, which 
provides us with the cumulative frequency data that are required. Listing 6.5 shows our 
implementation. Note tbat the class milS! implement the method computeMappingO­
even though, in this case, the task that it perfOlms is meaningless. 

The following fragment of code shows how we carry out histogram equalisation on a 
Bufferedlmage using EqualiseOp: 
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LISTING 6.5 A subclass of GreyMapOp that performs histogram equalisation. 

package com.pearsoneduc.ip.op; 

public class EqualiseOp extends GreyMapOp { 

public EqualiseOp(Histogram hist) throws HistogramException { 
float scale = 255 .0f / hist.getNumSamples()j 
for (int i OJ i < 256; ++i) 

table[i] = (byte) Math.round(scale*hist.getCumulativeFrequency(i»j 

" } 

" 
12 public void computeMapping(int low. int high) { 
u /1 Does nothing - limits are meaningless in histogram equalisation 

" } 

" " } 

Histogram histogram = new Histogram(image)j 
EqualiseOp equalise = new EqualiseOp(histogram); 
Bufferedlmage equalisedlmage = equalise.filter(image. null); 

6.5 Colour processing 

So far, we have considered how brightness and contrast can be manipulated in greyscale 
images. But what about colour images? We have already seen that pixel values in a colour 
image are vectors, typically with three components. These components usually represent 
the proportions of red, green and blue that make up a colour. Faced with the task of 
enhancing contrast in such an image, we might be tempted to perform an operation such as 
histogram equalisation on each of the three components separately. However, if we do this, 
the intensity distribution of each component is altered in a different way, with the result that 
both contrast and colour are changed (Plate A). This is probably not what we require. 

The problem arises because each component of the RGB model contains both colour 
and intensity information. If we wish to manipulate colour and intensity independently, 
we must use a colour model that decouples these attributes. In this respect, the HSI model 
(Section 3.4.2) is ideal. To manipulate properly the brightness or contrast of an RGB image, 
we must apply a transformation from RGB space to HSI space, modifY the I (intensity) 
component, then apply the inverse transformation from HSI space to RGB space. Plate A 
shows histogram equalisation applied to the I component of a colour image; the resulting 
image has improved contrast and an unchanged balance of colour. 

We can achieve other effects by adjusting the H (hue) and S (saturation) components. 
Plate B shows the effect of a uniform reduction in the hue component at each pixel of the 
butterfly image in Plate A. (This can be visualised as a 60° rotation about the 1 axis in HSI 
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space.) We can also modify hue selectively-in order to transfonn red into green without 
affecting other colours, for example. 

Plate C shows the effect of changing the saturation of each pixel in the butterfly image. 
Increasing saturation increases the apparent purity or 'richness' of the colours in the image; 
decreasing saturation gives the image a 'washed out', almost grey appearance. 

6.S.1 Histograms of colour images 

When given the task of computing the histogram of a colour image, our Histogram class 
will, like most image processing software, give us three separate, one-dimensional his­
tograms: one for the R component, one for the G component and one for the B component. 
Figure 6.22 plots these histograms for the butterfly image of Plate A. It is important to 
realise, however, that the true histogram of a colour image is three-dimensional. We must 
imagine the RGB colour cube divided up into bins, giving a 256 x 256 x 256 array. There 
is thus a bin for every possible colour in 24-bit RGB image. The bin at (0, 0, 0) records the 
number of black pixels in the image; the bin at (255, 0, 0) records the number of pure red 
pixels in the image; and so on. The three histograms in Figure 6.22 are projections of this 
3D histogram onto the R, G and B axes, respectively. Algorithm 6.5 shows how a colour 
histogram can be computed. 
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Figure 6.22 Histograms olthe R, G and B components olthe butterfly image. 

One reason for preferring histograms of each component to a single histogram created 
by Algorithm 6.5 is that the latter demands a great deal of storage space. When b = 8, for 
instance, the array has dimensions 28 x 28 x 28, giving over 16 million bins. Ifa 32-bit 
integer is used for bin counts, the total storage requirement for a single colour histogram 
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ALGORITHM 6.5 Calculation of a colour image histogram. 

Create a 3D array histogram of dimensions 2b x 2b X 2b 
for all red values, r, do 

for all green values, g, do 
for all blue values, b, do 

Izistogram[r][g][b] = 0 
end for 

end for 
end for 
for all pixel coordinates, x and y, do 

Find r , the red component of f (x , y ) 
Find g, the green component of f ex , y) 
Find b, the blue component of f ex , y) 
Increment histogram[r][g][b] by 1 

end for 

is a staggering 64 megabytes! However, this type of histogram wi ll invariably be very 
sparsely populated, so we can reduce storage requirements greatly if we choose a different 
representation for the histogram that exploits this sparseness2. 

Another disadvantage is that it is difficult to visualise how any quantity varies in a three­
dimensional space. As a compromise, we can compute two-dimensional histograms, which 
are much easier to visualise. These can be calculated for Rand G, Rand B or G and 
B. The R -G histogram can be thought of as the projection of the 3D histogram onto the 
B = 0 plane. Similar interpretations can be made of the other 2D histograms. The storage 
requirements for 2D histograms are far more manageable than those of30 histograms, and 
they contain more information than a set of one-dimensional histograms. This can be seen 
in Figure 6.23, which plots the three 2D histograms ofthe butterfly image. These plots show 
correlations between the colour components that would not be evident in one-dimensional 
histograms. 

6.6 Further reading 

Gonzalez and Woods [20] give a more detailed description of the histogram specification 
technique. 

Adaptive contrast enhancement is discussed by Gonzalez and Woods [20] and by Um­
baugh [48]. In this technique each pixel's grey level is mapped to a new value by means of 
Equation 6.3, the parameters of this mapping being determined from local image statistics. 

Lyon [29] describes an adaptive histogram equalisation technique and present a Java 
implementation of it. 

2 A hash table would be a suitable representation. 
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Figure 6.23 Two·dimensional histograms for the butterfly image. (The image was re­
quantised to 6 bits per colour component, as this makes the plots somewhat clearer.) 
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6.7 Exercises 

1. Under what circumstances is a grey level mapping reversible? Under what circumstances 
is the mapping non-reversible? 

2. Suppose that we have an image 1000 pixels wide and 1000 pixels high. The image is 
quantised using 8 bits per pixel, and the full range of grey levels is already in use. A 
logarithmic mapping of grey level is proposed to improve the appearance of this image. 
Assuming that the cost of accessing an array element is negligible compared with the 
cost of calling a logarithm function from the maths library, how much faster is it to use 
a look-up table than to calculate the mapping pixel by pixel? 

Now suppose that we have a 200 x 200 x 16 bit image. Does the same hold true for 
this image? 

3. An 8-bit image has a minimum grey level of 30 and a maximum grey level of 100. 
Describe carefully the effect on this image's histogram of 

Ca) Subtraction of 50 from all pixel grey levels 
Cb)Exponential mapping of grey level onto the range 0- 255 
(c) Histogram equalisation 

4. Modify the code of Listing 6.1 so that an input image and an output image are passed 
in as method parameters. If null is passed in for the output image, the methods should 
do in-place processing of the input image, rather than creating a new object in which to 
store the new data. 

5. Extend GreyMapOp in the com. pearsoneduc. ip. op package to create a new class, 
PowerLawOp. This should apply a power-law mapping of grey level, with the power being 
specified as the sole parameter of the constructor. Then reimplement SquareRootOp 
from com . pearsoneduc. ip. op as a simple extension of the PowerLawOp class. 

6. Create an application similar to GreyMapTool in which the mapping applied to an image 
can be edited using the mouse. The mapping should be shown as a curve or a series of 
straight line segments. It should be possible to click on points defined on the curve or at 
the ends of the line segments and drag them to change the shape of the mapping. 
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This chapter deals with operations in which th e new value calculated for a pixel 
depends not only on that pixels original value but also on the values a/surround­
ing pixels. These neighbourhood operations have many applications, including the 
blurring or sharpening a/images, noise reduction and the detection of edges or other 
features a/interest. 

7.1 Introduction 

A single pixel considered in isolation conveys information on the intensity and possibly the 
colour at a single location in an image, but it can tell us nothing about the way in which 
these properties vary spatially. It follows that the point processes described in the preceding 
chapter, which change a pixel's value independently of all other pixels, cannot be used to 
investigate or control spatial variations in image intensity or colour. For this, we need to 
perform calculations over areas of an image; in other words, a pixel's new value must be 
computed from its old value and the values of pixels in its vicinity. These neighbourhood 
operations are invariably more costly than simple point processes, but they allow us to 
achieve a whole range of interesting and useful effects. 

In this chapter, we consider two classes of neighbourhood operation: one in which a 
pixel 's new value is a weighted sum of its old value and those of its neighbourhood; and 
another in which the new value is selected from an ordered sequence of the values found in 
the neighbourhood. We also assume that these operations are being performed on greyscale 
images. (Most of them can be extended in a natural way to process colour images.) 

133 
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7.2 Convolution and correlation 

Convolution and correlation are the fundamental neighbourhood operations of image pro· 
cessing. They are linear operations. In practice, trus means that, for an image f and a scale 
factor s, 

C[sI(x , y )] = sC[I(x, y )] , (7.1 ) 

where C denotes either convolution or correlation. It also means that, for any two images 
11 and h. 

c[II(x , y) + hex , y )] = C[JI(X, y)] + c[h(x, y )]. (7.2) 

The calculations perfonned in convolution are almost identical to those done for cor­
relation. The two operations differ in a rather subtle way that, in many cases, makes no 
difference to the result of image processing. Hence you will find that many texts use the 
term 'convolution' when, strictly, they should be describing the operation as correlation. 
Here, we shall endeavour to explain carefully the difference between the two operations and 
the circumstances under which they yield the same results. 

The computation perfonned in convolution or correlation has two main applications. 
One is the filtering of images---e.g., to suppress noise or enhance edges. In this case, it is 
normal to describe the calculation done at each pixel as a convolution, regardless of what it 
is in a strict mathematical sense. The other application is in measuring the similarity of two 
images. This is useful in feature recognition and in registration, where we wish to place 
one image relative to another at a position of maximum similarity. In these applications, 
we use the term correlation to describe the calculations. 

7.2.1 Calculating a convolution 

In convolution, the calculation performed at a pixel is a weighted sum of grey levels /Tom 
a neighbourhood surrounding a pixel. The neighbourhood includes the pixel under consid· 
eration, and it is customary for it to be disposed symmetrically about that pixel. We shall 
assume this to be the case in our discussion, although we note that it is not a requirement 
of the technique. Clearly, if a neighbourhood is centred on a pixel, then it must have odd 
dimensions, e.g., 3 x 3, 5 x 5, etc. The neighbourhood need not be square, but this is usually 
the case- since there is rarely any reason to bias the calculations in the x or y direction. 

Grey levels taken /Tom the neighbourhood are weighted by coefficients that come from 
a matrix or convolution kernel. In effect, the kernel's dimensions define the size of the 
neighbourhood in which calculations take place. Usually, the kernel is fairly small relative 
to the image-dimensions of 3 x 3 are the most conunon. Figure 7.1 shows a 3 x 3 kernel 
and the corresponding 3 x 3 neighbourhood of pixels /Tom an image. The kernel is centred 
on the shaded pixel. The result of convolution will be a new value for this pixel. 

During convolution, we take each kernel coefficient in turn and multiply it by 
a value from the neighbourhood of the image lying under the kernel. We apply the 
kernel to the image in such a way that the value at the top-left corner of the kernel is 
multiplied by the value at the bottom·right comer of the neighbourhood. Denoting the 
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Figure 7.1 A 3 x 3 convolution kernel and the corresponding image neighbourhood. 

kernel by h and the image by f, the entire calculation is 

g(x,y)= h(- I, - I) f(x+l,y+l) + 
h(O,-I) f(x,y+l) + 
h(I , -I) f(x-l,y+l) + 
h(-I,O) f(x+l,y) + 

h(O, 0) f(x,y) + 
h(I,O) f(x - l,y) + 

h (-1, 1) f (x + 1, Y - 1) + 
h(O,I) f(x, y - 1) + 
h(I , I) f(x - 1, y - 1), 

This summation can be expressed more succinctly as 

1 1 

g(x, y) = L L h(j, k)f(x - j, y - k), 
k= -i j = -l 

(7 ,3) 

(7.4) 

For the kernel and neighbourhood illustrated in Figure 7,1, the result of convolution is 

g(x, y) = (-1 x 82) + (l x 88) + (-2 x 65) + (2 x 76) + (- 1 x 60) + (1 x 72) = 40 

Note that a new image (denoted g in Equation 7.4) has to be created to store the results 
of convolution. We cannot perfonn the operation in place, because application of a kernel 
to any pixel but the first would make use of values already altered by a prior convolution 
operation. 

Referring to Equation 7.3 and Figure 7,1, we can see that the kernel coefficients are taken 
in sequence, starting at the top-left corner and ending at the bottom-right corner, The pixels 
associated with these kernel coefficients are sequenced in precisely the opposite direction; 
that is, starting from the bottom-right corner of the neighbourhood and ending at its top­
left corner. Note that if we were to rotate the kernel by 180°, then both sequences would 
run in the same direction. Each kernel coefficient would then pair with the pixel directly 
beneath it. This reordering seems more intuitive; indeed, it is assumed in several textbook 
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descriptions of convolution, and in many software implementations ofthe technique. Strictly 
speaking, however, these books and programs describe or implement correlation rather than 
convolution (see Section 7.2.4). The correct definition of convolution requires that we use 
the counterintuitive pairing of kernel coefficients with pixels. Note that the distinction 
between convolution and correlation disappears when the kernel is symmetric under 1800 

rotation. The popular 3 x 3 kernels 

[: 1] and [ =: -~ =:] 
-1 - I -I 

both have this property. 
For a kernel of width m and height n, with m and n both odd, Equation 7.4 generalises to 

n2 m2 

g(x , y) = L L h(j, k)l(x - j , y - k), 
k= - n2 j=-m2 

where the kernel half-width, m2, and half-height, 112, are given by 

1112 = [m/ 2J, 

112 = [1I/2J , 

(7.5) 

(7.6) 

(7.7) 

and L J is an operation that rounds its argument down to an integer. The swnmations 
therefore go from - 1 to I for a 3 x 3 kernel, - 2 to 2 for a 5 x 5 kernel, etc. 

Algorithm 7.1 shows how we can compute an m XIl convolution ata single pixel. The only 
difference between this algorithm and Equation 7.5 lies in the way that kernel coefficients 
are accessed. The equation assumes that the central coefficient of the kernel has indices 
(0, 0), but the array that we use to store kernel coefficients has its upper-left corner at these 
indices. Adding 1112 and n2 to the kernel indices transforms them into suitable array indices. 

ALGORITHM 7.1 Convolution at a single pixel. 

Create an array h, indexed from 0 to m - I horizontalIy and 0 to n - I verticalIy 
Fill h with kernel coefficients 
m2 = [m/ 2J 
"2 = [n/2J 
sum = 0 
for k = - 112 to 112 do 

for j = - m2 to m2 do 
Slim = Slim + h(j + m2 , k + 1l2)I(x - j, y - k) 

end for 
end for 
g(x, y) = slim 

Equation 7.5 is somewhat cumbersome. We may avoid writing it out in full by using the 
shorthand form, 

g(x , y) = h * I(x, y), (7.8) 
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where h denotes the kernel and * denotes the convolution operation. Note that Equation 7.8 
implies the use of Equation 7.5. Note also that these expressions describe convolution at a 
single pixel; we may write 

(7.9) 

to indicate that convolution is performed over the entire image. 

Computational problems 

We must deal with two major computational problems when applying Equation 7.5 to each 
pixel of an image. The first problem is one of representation. We might assume that the 
image, g, that we create to hold the results of convolution should have the same pixel 
data type as the input image, f. However, g(x, y) is computed by a summation over a 
neighbourhood consisting of several pixels, so it is possible for its value to exceed the range 
that can be represented by this data type. Moreoever, if any of the kernel coefficients are 
negative, it is possible for g(x, y) to be negative. In such cases, we must use a signed data 
type for the output image or transform its values in such a way that they no longer fall below 
zero. 

For example, suppose that we are convolving an 8·bit image with a 3 x 3 kernel whose 
coefficients are all equal to 1. In this case, convolution is simply a sum over the neigh­
bourhood surrounding a pixel. But all the pixels in a neighbourhood could, in theory, have 
the maximum value of 255-giving a result of9 x 255 = 2295. We can deal with this by 
using a 16-bit or 32-bit integer representation; alternatively, we can normalise the result of 
convolution so that it lies within a range compatible with the input image data type. In this 
example. dividing g(x, y) by 9 is appropriate l . 

The second major problem concerns the borders of the image. Here, it is not possible 
to compute a convolution, because part of the kernel lies beyond the image (Figure 7.2). 
In fact, this is true of any neighbourhood operation, not just convolution. The size of 
the region in which normal convolution is possible is dictated by the dimensions of the 
convolution kernel. For a 3 x 3 kernel, one pixel at each border cannot be processed. So if 
the input image has dimensions M x N, then the region to which Equation 7.5 applies has 
dimensions (M - 2) x (N - 2) and an origin of (I, I) . For a 5 x 5 kernel, two pixels at 
each border cannot be processed and the region has dimensions (M - 4) x (N - 4) and an 
origin of (2,2) . For a generalm x II kernel with kernel half-width and half-height defined 
by Equations 7.6 and 7.7, the region in which convolution can take place has its origin at 
(1112, "2) and dimensions of (M - 2m2) x (N - 2112) . 

A number of different strategies exist to deal with this problem. 

I. No processing at tbe border 

The simplest solution is to ignore those pixels for which convolution is not possible. 
Algorithm 7.2 shows how convolution of an entire image can be performed using this 
strategy. The dimensions of the output image are the same as those of the input image, 
and its pixels will normally each be given an initial value of zero; consequently, we will 

[ It may be more efficient co incorporate any normalisat ion factor into the kernel coefficients, since this means 
that one less multiplication is required at each pixel. 
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3x3 kernel 

B 
A 

image 

Figure 7.2 Failure of convolution at the borders of an image. At pixel A. convolution 
is possible because the kernel fits wholly within the image. Convolution is not possible at 
pixel B-or, indeed, at any of the shaded pixels. 

ALGORITHM 7.2 Convolution of an image, ignoring the borders. 

Create a suitable kernel , h, with dimensions 111 x n 
Compute kernel half-width, "'2 = Lm(2J 
Compute kernel half-height, "2 = LI1(2J 
Create an M x N output image, g 
for all pixel coordinates, x and y, do 

g(x.y) =O 
end for 
for y = 112 to N - 1/ 2 - 1 do 

for x = 1112 to M - 1112 - 1 do 
Compute value of g(x, y) using Algorithm 7.1 

end for 
end for 

see a black border in the output image. This may cause a significant change in the grey 
level statistics of the image, which could affect subsequent operations performed on that 
Image. 

2. Copying of input image pixels 

Another solution is to copy the corresponding pixel value from the input image wherever 
it is not possible to carry out convolution; consequently, the output image will have a 
border of unprocessed pixels. For certain convolutions, this may have a less detrimental 
effect than a black border around the image, but it is not an appropriate solution in all 
cases. 

3. Truncation of the image 

A simple way of avoiding a border with very different properties from the rest of the 
image is to remove those pixels for which convolution is not possible. This results in an 
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output image that is smaller than, and offset relative to, the input image. This may cause 
problems if we subsequently need to combine the input and output images arithmetically 
(see Section 5.5.3) or otherwise compare them on a pixel-by-pixel basis. 

4. Truncation or the kernel 

Another solution is to deal with the borders of the image as a special case, and use a mod­
ified kernel to perfonn convolution in these locations. For example, when convolving 
with the 3 x 3 kernel 

we can use the following truncated versions of this kernel at the corners and sides ofthe 
Image: 

The effects of these kernels on the image will be similar to the effect of the full-sized 
kernel. 

This technique adds considerably to the complexity of convolution; moreover, it is 
not possible to derive sensible truncated versions of many kernels. 

5. Reflected indexing 

The part of Equation 7.5 that causes problems is the term f(x - j, y - k). For certain 
values of x and y, one or both of the expressions x - j and y - k will give a value outside 
the allowed range. (In the case of an M x N image, the allowed ranges are [0, M - I] 
for the x coordinate and [0, N - I] for the y coordinate.) Therefore, at each stage orthe 
calculation, we can test x - j to see whether it corresponds to a valid pixel x coordinate 
and, ifit doesn't, we can reftect the coordinate back into the image (Figure 7.3). The same 
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(a) (b) 

Figure 7.3 Mapping of invalid x and y coordinates back into an image. (a) Reflected 
indexing. (b) Circular indexing. 
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can be done for y -k. This simulates mirroring of the image at its borders Of, equivalently, 
reflection of the kernel wherever its coefficients fail to pair with pixels from the image. 

Algorithm 7.3 shows how an x coordinate can be reflected back into an image 
whenever it exceeds the bounds of that image. Algorithm 7.4 demonstrates how this 
strategy can be incorporated into the convolution of an entire image. 

ALGORITHM 7.3 Refiected indexing of an image x coordinate. 

Let M be the image width 
if x < 0 then 

x = - x - I 
else if x ;;: M then 

x = 2M - x -l 
end if 

ALGORITHM 7.4 Convolution of an image using reflected indexing. 

Create a suitable kernel , Iz , with dimensions m x n 
Compute kernel half-width, tIl2 = Lmj2J 
Compute kernel half-height, 11 2 = LIl/2J 
Create an M x N output image, g 
for all pixel coordinates, x and y, do 

sum = 0 
for k = -112 to 11 2 do 

for j = -m2 to m2 do 
Reflect x - j using Algoritlun 7.3, to give x' 
Reflect y - k by a similar algorithm, to give y' 
sum = sum + h(j + tIl2, k + n2)f (x', y' ) 

end for 
end for 
g(x ,y) = sum 

end for 

6. Circular indexing 
The reflected indexing approach described in (5) above is one way of simulating access 
to pixels beyond the real bounds of the image. Another is to imagine that the image 
repeats itself endlessly in all directions. This sounds rather odd but, in fact, there 
are sound theoretical reasons for assuming this to be the case. (We shall return to 
this point in Chapter 8.) Replicating the image in this way would be costly in terms 
of time and memory usage, but we can achieve the same effect by means of circular 
indexing-whereby coordinates that exceed the bounds of the image ' wrap around ' to 
the opposite side (Figure 7.3). Algorithm 7.5 demonstrates circular indexing for the x 
coordinate. A similar algorithm will perform the task for the y coordinate. 
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ALGORITHM 7.5 Circular Indexing. 

Let M be the image width 
if x < 0 then 

x=x+M 
else if x ? M then 

x=x-M 
end if 
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To perform convolution of an entire image in this fashion , we can use Algorithm 7.4 
again. substituting the circular indexing algoritluns for Algorithm 7.3 and its equivalent 
for y coordinates. 

Performance issues 

Convolution is very expensive computationally. Evaluation of Equation 7.5 for an 11 x n 
kernel requires 112 multiplications and the same number of additions per pixel, and there are 
typically 105-106 pixels per image. We can use software techniques or hardware to speed 
things up. 

A much more efficient algorithm can be used for convolution in the small number of 
cases where a kernel is separable. A separable n x n kernel can be represented as a vector 
product of two orthogonal, one-dimensional kernels, each of width n. Convolution with the 
kernel can be carried out using these one-dimensional components. One of them is applied 
down the columns of an image, generating an intermediate result. The other kernel is then 
applied along the rows of the intermediate image, producing the final result. Algoritlun 7.6 
gives further details of the process. 

Note that this is an 0 (11) operation, compared with 0 (n2) for standard, two-dimensional 
convolution. Convolution with a separable 15 x 15 kernel requires just 13 percent of the 
computation necessary when a non-separable kernel is used. The Gaussian kernel discussed 
in Section 7.3 is the classic example of a separable kernel. 

We can benchmark separable versus non-separable convolution in Java using the tech­
niques discussed in Section 6.2.3. Figure 7.4 summarises the results obtained from timing 
convolution operations on a 512 x 512 image. The platform used was a Pentium II ma­
chine running lDK l.2 under Windows 95. lIT compilation was enabled. (The slowdown 
ITom disabling it was significant, with execution times increasing by a factor of 5- 6 for the 
smaller kernels.) 

The data points labelled 'standard kernel ' were computed using an implementation of 
Algoritlun 7.2. They lie on an approximately quadratic curve, just as we would expect for 
an 0(n2) operation. The dataset labelled 'separable kernel' was generated by an imple­
mentation of Algoritlun 7.6. The improvement in performance achieved when the kernel is 
separable is significant. The execution times for a 15 x IS kernel- just over 8 seconds when 
it is non-separable, compared with around 1 second when it is separable-agree closely with 
our earlier observation concerning the relative costs of the two algorithms. 

Figure 7.4 plots one further dataset, obtained using the ConvolveOp class ITom the 



142 Neighbourhood operations 

ALGORITHM 7,6 Convolution with a separable kernel. 

Decompose the kernel into a pair of one-dimensional kernels, hx and hy, each of size 11 

Compute kernel half-width, "2 = LI1 / 2J 
Create an M x N output image, g 

Create an M x N temporary image, t 
for y = 112 to N - "2 - I do 

for x = 0 to M - 1 do 
sum = 0 
for i = -112 to 112 do 

S11m = S11m + hy(i + 112)f(x, y - i) 
end for 
I(X, y) = Slim 

end for 
end for 
for y = 0 to N - I do 

for x = n2 to M - 112 - 1 do 
sum = 0 
for i = -Il l to 112 do 

sum = sum + hx(i + 112)t(X - i. y) 
end for 
g(x, y) = s lim 

end for 
end for 
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Figure 7.4 Convolution time as a function of kernel size. Curves are plotted for explicit 
convolution using a standard 2D kernel and a separable kernel, and for convolution using 

ConvolveOp. 
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lava2D API. This class is discussed further in Section 7.2.5. Here, we simply note that 
it outperforms OUT experimental, pure Java implementation significantly and achieves a 
performance similar to that of the separable algorithm. This occurs because ConvolveOp 
has at its core a native machine code implementation of the critical parts of the algorithm. 

Convolution is so fundamental to image processing that specialised hardware exists to 
perform the operation in real time. We can also use general , high-performance comput­
ing architectures to convolve images more efficiently. On multiprocessor machines, for 
instance, we can split the image into chunks and assign one chunk: to each processor. At 
a lower level, we can allow the multiplication and addition operations that take place in 
Equation 7.5 to occur in parallel. Without hardware assistance, the cost of spatial convolu­
tion with large masks is prohibitive; in such cases, the same effects can be achieved more 
efficiently by operating in the frequency domain. This is the subject of Chapter 8. 

Correlation 

A correlation is computed in almost exactly the same way as a convolution. The computation 
can be expressed as follows : 

112 1112 

g(x , y) = L L h(j, k)f(x + j. y + k), (7.10) 
k=-n2 j=-m2 

where 1112 and "2 are defined as before. This differs from Equation 7.5 only in that kernel 
indices j and k are added to, rather than subtracted from, pixel coordinates x and y. This has 
the effect of pairing each kernel coefficient with the image pixel that lies directly belleath 
it. Since the two operations differ only by a 1800 rotation of the kernel, we can compute an 
unnormalised corre lation using the same hardware or software that we use for convolution. 
(By the same token, if we have an implementation of 'convolution' that actually evaluates 
Equation 7.10, we can obtain a true convolution by rotating the kernel through 1800 before 
computation.) 

Correlation is often used in applications where it is necessary to measure the similarity 
between images or parts of images. For instance, we might need to locate a particular 
feature in an image. This can be done if we create a small image which acts as a model 
or template for that feature. We can place the template over the image to be searched and 
move it around until we find the position of maximum similarity; this we take to be the 
position of the feature. In such applications, h from Equation 7.10 is our template. We 
no longer describe it as a kernel because it is usually much larger than typical convolution 
kernels, and because the values it contains are usually of the same type and range as pixel 
values in the image. (Convolution kernel coefficients are often real numbers, and can be 
negative-unlike the pixel values of most images.) 

Note that Equation 7.10 implicitly gives higher values for correlation in brighter parts 
of an image, which can make it difficult to identify the point of maximum similarity. It is 
therefore customary to normalise g (x, y). One way of doing this is to divide by the sum of 
grey levels in the image neighbourhood, i.e., 

'() g(x,y) g x,y = . Lk Lj f(x + j, y + k) 
(7.11) 
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Gonzalez and Woods [20] describe a somewhat more sophisticated approach involving 
computation of a correlation coefficient: 

Lk LP(J, k) - h][f(x + j, y + k) -l<x, y)] 
y(x, y) = c============C==C:===========:' JL Lj[f(X + j, y + k) - lex, y)]2 Lk Lj[h(j, k) - 11 ]2 

(7, 12) 

Here, ", computed once only, is the average pixel value in the template, and lex, y) is the 
average pixel value in the image neighbourhood, y(x, y) is normalised with respect to both 
the image and the template, and it always lies in the range [- I, I], 

Figures 7,5 and 7,6 give an example of correlation, In Figure 7.5(a), we see a synthetic 
image consisting of white text on a grey background, The text has been blurred slightly and 
a moderate amount of Gaussian random noise has been added to the image, Figure 7,5(b) 
shows a small template for one of the letters present in the text (the letter 'v'), We can 
attempt to locate the letter in the text by correlating the image with the template, 

(a) (b) 

Figure 7.5 Correlation of an image with a template. (a) Noisy image containing a 
feature of interest. (b) Template representing the feature. 

Figure 7,6(a) displays correlation in image form, with bright pixels representing points 
of high correlation between the image and the template, There are partial matches between 
the template and the other letters in the text, as indicated by the moderately bright pixels in 
the correlation image, However, the brightest of the pixels is at centre of the letter 'v' in the 
image, indicating that we have successfully located it. The maximum value of correlation 
is more prominent in Figure 7 .6(b), which plots correlation as a surface. 

Correlation works well only if we know the size and the orientation of the feature of 
interest. and can design an appropriate template. If the size and orientation of the fearure 
can vary, we will need to generate a range of templates and correlate each with the image, 
at great computational cost. In such cases, it may be better to avoid correlation and, instead, 
use some measure of similarity that is invariant to scaling and rotation. 

The cost of doing correlation using Equation 7.10 becomes prohibitive as template size 
increases. Fortunately, a more efficient way exists of correlating large templates with 
images, based in the frequency domain. This is covered in Chapter 8. 
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correlation 

85 

y 

(a) (b) 

Figure 7.6 Results of correlation. (a) Correlation rendered as an image; the brightest 
spot is the position of maximum similarity. (b) Correlation in the vicinity of the maximum 
value, plotted as a surface. 

Convolution in Java 

Java2D provides two classes to support image convolution: Kernel and Convol veOp. The 
Kernel class represents convolution kernels. A Kernel object is constructed by providing 
kernel dimensions and a one-dimensional float array of coefficients: 

int width = 3; 
int height = 3; 
float[] coeff = new float [width*height] ; 
for (int i = 0; i < coeff.length; ++i) 

Goeff[i] = 1.0f/coeff.length; 
Kernel kernel = new Kernel(width. height, coeff); 

This example creates a 3 x 3 kernel whose coefficients are all equal. Note that each 
coefficient is normalised, such that the sum of coefficients equals 1. We must do this 
because ConvolveOp does not normalise the results of convolution itself. 

The Convol veOp class implements Buff eredlmageOp and therefore behaves in much 
the same way as other classes that implement this interface. An image can be convolved as 
follows: 

ConvolveOp op = new ConvolveOp(kernel); 
Bufferedlmage output Image = op.filter(inputlmage, null); 

The ConvolveOp object created in this example perfonns no processing at the borders of 
the image, leaving pixels with a value of zero. An additional argument can be supplied to 
the constructor, specifying this behaviour explicitly or the alternative behaviour of copying 
pixel values from the source image: 

ConvolveOp opl 
ConvolveOp op2 

new ConvolveOp(kernel, ConvolveOp.EDGE_ZERO_FILL); 
new ConvolveOp(kernel, ConvolveOp.EDGE_NO_OP); 
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An improved kernel class 

A useful feature not provided by the Kernel class is the ability to save kernel data to 
a fi le (or some other kind of output stream) or create a new kernel from data stored in 
a file (or from a stream). We can extend Kernel in order to add this capability. This 
is done in the class StandardKernel, part of the com. pearsoneduc . ip . op package. 
StandardKernel has a static method createKernelO that takes a Reader object as 
a parameter and returns a new StandardKernel created with data obtained from the 
Reader. It also provides wri te 0, a method that outputs kernel data to some destination 
specified by a Wri ter object. 

A StandardKernel can be constructed using a width, a height and a float array of 
coefficients. A second constructor takes these parameters plus one additional parameter, 
representing the number of digits that appear after the decimal point when writing ker­
nel coefficients. This parameter can be inspected and modified subsequently, using the 
getFractionDigits 0 and setFractionDigi ts 0 methods. By default, four digits 
appear after the decimal point when coefficients arc written. 

Listing 7.1 shows a simple program that creates a 5 x 5 kernel and writes it to standard 
output. It produces the following output on screen: 

# convolution kernel 
552 
0.04 0.04 0 . 04 0 . 04 0 . 04 
0.04 0.04 0.04 0.04 0.04 
0.04 0.04 0.04 0.04 0.04 
0 . 04 0.04 0.04 0.04 0 . 04 
0.04 0.04 0.04 0.04 0 .04 

The first line is a comment, ignored when reading the kernel. The next line contains kernel 
width, kernel height and the number of fraction digits to use when formatting coefficients, 

LISTING 7.1 A simple program demonstrating how a convolution kernel can be created 
and written to an output stream. 

import java.io.OutputStreamWriter; 
import com.pearsoneduc.ip.op . StandardKernel; 

public class WriteKernel { 
public static void main(String[] argv) { 

float[] data = new float [25] ; 
float coeff = 0.04f; 
for (int i = 0; i < 25; ++i) 

data[i] = caeff; 
10 StandardKernel kernel = new StandardKernel(5, 5, data, 2) j 

II kernel. wri te (new OutputStreamWri ter (System. out» ; 
12 } 

" } 
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each separated from the other parameters by whitespace. The remainder of the data consists 
of kernel coefficients, separated from each other by whitespace. If this kernel were stored 
in a file called test. ker, the following code would read data from that file and create a 
new kernel: 

Reader input = new FileReader(lItest.ker H
); 

Kernel kernel = StandardKernel.createKernel(input)j 

The createKernel () method has an optional boolean parameter that specifies whether 
kernel coefficients should be normalised on input. By default, no normalisation is done. If 
this parameter is true, kernel coefficients are summed as they are read in and the coefficients 
are then divided by the sum should it be greater than I. This facility is useful when reading 
a kernel fi le such as this: 

# convolution kernel 
330 
111 
111 
111 

When a kernel with these coefficients is used with Convol veOp, the output from convolution 
at cach pixel is likely to exceed 255 in most cases, producing an image in which most of 
the pixels are white. Reading the kernel using code such as 

Reader input = new FileReader(lItest.ker ll
); 

Kernel kernel = StandardKernel.createKernel(input. true); 

solves the problem. 

An improved convolution operator 

Convol veOp is efficient because it has native code at its core, but it suffers from several 
limitations. As we have seen, it supports only two of the various ways of dealing with pixels 
at the borders of an image. Another limitation is that it cannot do separable convolution. 
Performance is therefore not optimal for kernels that are separable (such as the Gaussian 
kernel, discussed in Section 7.3.1). A serious flaw in ConvolveOp is its handling of kernels 
containing negative coefficients. As we shall see shortly, many useful kernels possess this 
characteristic. The result of convolution with such kernels can be a positive or negative 
number, but when ConvolveOp processes an 8-bit greyscale image, it outputs another 8-bit 
greyscale image, with values in the range 0-255. How, then, arc negative values handled? 

Figure 7.7 shows an image ofa bam and plots grey levels for a short horizontal sequence 
of pixels taken from the centre ofthe image. A lso plotted are the outputs from Convol veOp 
and from Equation 7.4 obtained when the 3 x 3 kernel 

[ =: ~ :] -I 0 I 

is applied to the sequence of pixels. It is quite clear that, when convolution produces a 
negative result, the output from Convol veOp is zero. Similarly, when convolution produces 
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Figure 7.7 Behaviour of ConvolveOp. Top: an image. Middle: grey levels for a short 
sequence of pixels taken from the image. Bottom: results of convolution at these pixels, 
compared with the output of ConvolveOp. 
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a result exceeding 255, the output from Convol veOp is fixed at 255. Evidently, Convol veOp 
truncates its output to lie in a 0-255 range. 

We can implement our own class, ConvolutionOp, that does not suffer from the lim­
itations outlined above. Once again, the StandardGreyOp class described in Chapter 6 
forms the basis of the implementation. We define a subclass, NeighbourhoodOp, in or­
der to factor out the characteristics common to all neighbourhood operations, and derive 
ConvolutionOp from this class. Figure 7.8 shows the structure ofNeighbourhoodOp and 
its relationship to other classes. 

«interface» 
BufferedlmageOp 

~ , , , 

StandardGreyOp 

y 
I 

NeighbourhoodOp 

- nt wi dth 
- nt hei ght 
- nt size 
- nt borderStrategy 

+ int reflndex(int i int n} 
+ int circlndex Ci nt i. int n) 

+ NeighbourhoodOp(int w, int h, int border) 
+ int getWi dth O 
+ int getHe;ght() 
+ int getNumPixels() 
+ int getBorderStrategy() 
# void copyBorders(Raster src, WritableRaster dest) 

Figure 7.8 A class to support neighbourhood operations on S-bit greyscale images. 

NeighbourhoodOp contains instance variables to hold the width and height of the neigh­
bourhood in which processing is taking place, along with methods to inspect their current 
values. The class constructor initialises these variables, checking that the supplied inte­
ger values are odd and positive. NeighbourhoodOp also contains a variable that records 
the chosen border processing strategy, which can be one of the values NO_BORDER_OP, 
COpy _BORDER]IXELS, REFLECTED_INDEXING or CIRCULAR_INDEXING. Some methods 
are provided to support these border processing strategies. The two static methods (under­
lined in Figure 7.8) perform the calculations necessary for reflected and circular indexing; 
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Ke rne 1 NeighbourhoodOp 

(onvolutionOp 

L_-<:)I - i nt cal cul at; onMethod 
- int rescaleStrategy 

+ Bufferedlmage blurCBufferedlmage sec. int 1'/. jnt h) 
+ Bufferedlmaqe blurCBufferedlmaqe src int w int h. 

int border) 
+ Bufferedlmage gau5sianBlurCBufferedlmage src. float sigma) 
+ Bufferedlmage gau5sianBlurCBufferedlmage sec float sigma, 

; nt border) 

+ (onvolveOp(Kernel kernel) 
+ (onvolveOp(Kernel kernel, int border, int calc, 

i nt rescale) 
+ Bufferedlmage filter(Bufferedlmage sec, 

Bufferedlmage dest) 
+ float(] convolve(Bufferedlmage src) 
+ float[] separableConvolve(Bufferedlmage src) 
# void copyBorders(Raster src, float[] dest) 
# void convertToBytes(float(] in, byte[] out) 

Figure 7.9 Classes involved in convolution. 

the protected method, copyBorders 0, is used by ConvolutionOp and other neighbour­
hood operation classes to copy unprocessed pixels at the image borders from the input image 
to the output image. 

ConvolutionOp, illustrated in Figure 7.9, has a Kernel and two other instance variables 
to record the desired calculation method and rescaling strategy. The calculation method 
is specified by class constants SINGLE_PASS, signifying that a nonnal, two-dimensional 
calculation is to be performed in a single pass; and SEPARABLE, signifying that convolution 
is a two-pass operation in which the rows and columns of an image are processed separately 
with a one-dimensional kernel. In the latter case, the kernel supplied to a ConvolutionOp 
must have a height of I. 

The rescaling strategy determines how the results of convolution are mapped onto 
the 0-255 range required for an 8-bit greyscale output image. Possible values are: 
NO_RESCALING, whereby output is truncated, mimicking the behaviour of Convol veOp; 
RESCALE_MAX_ONLY, in which a scaling that maps the maximum value in the convolved 
data onto 255 is used; and RESCALE_MIN_AND_MAX, in which the range of values found in 
the convolved data is mapped onto a 0-255 range. For the special case of convolved data 
that contains negative values, RESCALE_MAL ONLY will transform the data in such a way 
that 0 maps onto 128. 
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ConvolutionOp provides constructors similar to ConvolveOp. We can construct a 
ConvolutionOp object using a Kernel alone- in which case the defaults of no processing 
at the borders, single-pass calculation and no rescaling of output data are applied-or by 
using a Kernel , a border handling strategy, a calculation method and a rescaling strategy: 

ConvolutionOp opl new ConvolutionOp(kernel); 

ConvolutionOp op2 new ConvolutionOp(kernel. 
NeighbourhoodOp.REFLECTED_INDEXING, 
ConvolutionOp.SINGLE_PASS, 
ConvolutionOp.RESCALE_MAX_ONLY); 

Once we have created a ConvolutionOp, it can be used to process a Bufferedlmage in 
the normal way: 

ConvolutionOp op = new ConvolutionOp(kernel); 
Bufferedlmage output Image = op.filter(inputlmage, null); 

The filterO method does the convolution by calling convolveO or 
separableConvolveO, as appropriate. The latter is invoked if SEPARABLE was 
specified as the calculation method. These methods return convolved data in a float array. 
Data from the array are rescaled in the specified manner and copied to the output image 
by filter O. Note that convolve 0 and separableConvol ve 0 are public, so these 
methods can be used for convolution instead offil tere) if rescaling is not appropriate or 
transfer of the output to a Bufferedlmage is not required. 

The ConvolutionOp class can be viewed as a drop-in replacement for Java2D's 
ConvolveOp. Its main advantage is greater flexibility. Its performance is generally less 
impressive than Convol veOp because its convolve 0 method has a pure Java imple­
mentation. However, for the special case of separable convolution, ConvolutionOp can 
outperform ConvolveOp when the kernel become moderately s ized. ConvolutionOp 
also provides a small number of static methods to simply the common operation of 
image blurring by convolution (see Section 7.3.1). These methods delegate processing to 
ConvolveOp or ConvolutionOp as appropriate, ensuring that blurring is done in the most 
efficient manner possible. 

Example applications 

Two convolution applications are provided on the CD. The first, Con vol ve, has a com­
mand line interface. It expects an input image filename, output image filename and kernel 
filename as command line arguments, along with three integers. The first of these is I if 
kernel coefficients should be normalised on input, 0 otherwise. The second integer pa­
rameter specifies a border processing strategy, as indicated in Table 7.1. The third integer 
specifies rescaling behaviour, as indicated in Table 7.2. Listing 7.2 shows the entire code 
for Convolve. 

The second convolution application, ConvolutionTool, has a graphical user interface. 
This application reads the image file named on the command line and displays the image 
on the left-hand side of the application frame. On the right-hand side, the output of a 
convolution operation is displayed. In the centre is a convolution kernel , whose coefficients 
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LISTING 7.2 A convolution application with a command line interface. 

import java . awt.image .• ; 
import java.ie .• ; 
impor~ com.pearsoneduc.ip.io .• ; 
import com.pearsoneduc.1p.op .• j 
import com.pearsoneduc.ip.util.lntervalTimer; 

public class Convolve { 
public static void main(String[] argv) { 

10 if (argv . length > 5) { 
II try { 

" 
" 
" 
" 
" 
" 
" 
" 
" 
" 

" 
" 

" 
" 

} 

} 

1/ Parse command line arguments 

ImageDecoder input = ImageFile.createlmageDecoder(argv[O)j 
ImageEncoder output = ImageFile,createlmageEncoder(argv[l]); 
Reader kernel Input = new FileReader(argv[2]); 
boolean normaliseKernel • (Integer.parselnt(argv[3) != 0); 
int borderStrategy = 

Math.max(l. Math.min(4, Integer.parselnt(argv[4]»)j 
int rescaleStrategy = 

Math.max(l, Math.min(3, Integer.parselnt(argv[5]»); 

II Load image and kernel 

Bufferedlmage input Image : input.decodeAsBufferedlmage(); 
Kernel kernel 
StandardKernel.createKernelCkernellnput, normaliseKernel); 

II Create convolution operator and convolve image 

ConvolutionOp convOp = new ConvolutionOp(kernel, 
border Strategy , ConvolutionOp.SINGLE_PASS, rescaleStrategy); 

IntervalTimer timer = new IntervalTimer(); 
timer. start () ; 
Bufferedlmage output Image = convOp. filter(inputlmage, null); 
System. out. println( "Convolution finished (" + timer. stop 0 + " sec]"); 

II Write results to output file 

output.encode(outputImage); 
System exit(O); 

catch (Exception e) { 
System.err.println(e); 
System. exit (1) ; 

} 

else { 

" " } 
" } 
" } 

System err.println( 
"usage: java Convolve infile outfile kernel norm border rescale"); 

System. exit (1) ; 
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Table 7.1 Border processing strategies in the Convol ve program. 

Value l\'feaning 

No border processing (border pixels will be zero) 

2 Copy border pixels from input image 

3 Reflected indexing 

4 Circular indexing 

Table 7.2 Rescaling behaviour in the Convolve program. 

Value Meaning 

No rescaling (output truncated to 0--255 range) 

2 Rescale using maximum only (symmetrically about 0 if necessary) 

3 Rescale so that range maps onto 0--255 

can be edited to any desired integer value. Kernel dimensions can be specified on the 
command line; the default is a 3 x 3 kernel. A menu bar presents a File menu and a 
Convolve menu. The former provides faci lities to save the current kernel to a file or load 
a new kernel; the latter is used to convolve with the current kernel, or reset coefficients 
to an ' identity kernel' that has no effect on the input image. The Convolve menu is also 
used to set various border processing and output rescaling options. Figure 7. I 0 shows 
ConvolutionTool in action. 

G!;ConvolutionTool \Test\dlce png I!!I~EJ 

COllvolutlOn finished fD.lB sec) 

Figure 7.10 A convolution application with a graphical user interlace. 
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7.3 Linear filtering 

Convolution can be used to carry out linear filtering of an image. The nature of the filter 
is determined by our choice of kernel coefficients. Standard kernels are available, with 
which we can accomplish blurring or sharpening of an image. But why are these operations 
described as 'filtering'? What does the term mean when applied to images? 

It may be helpful to consider a more familiar example of filtering. Domestic Hi-Fi 
equipment is often fitted with filters so that sound quality can be adjusted to suit the listener's 
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Figure 7.11 Grey level variations and spatial frequency. (a) Image containing low fre­
quency variation only. (b) Noisy image with high frequency components. (c) Grey level 
profiles across the images in (a) and (b). A white line marks the position of the profile on 

each image. 
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preferences. Usually, there are 'bass' and ' treble' controls that alter the proportions aflaw 
frequency and high frequency components, respectively, in the audio signal. When we turn 
down the treble control, we filter out the highest frequencies from the signal; similarly, when 
we turn down the bass control, we filter out the lowest frequencies. 

When we talk of the .ji·equency of a sound wave or an audio signal, we are referring to 
the rate at which the signal changes with time. When we talk of the frequencies present in 
an image, we are referring to changes occurring in space. Spatial frequency is a measure 
of how rapidly brightness or colour varies as we traverse an image. Images in which grey 
level varies slowly and smoothly are characterised solely by components with low spatial 
frequencies; images containing sudden grey level transitions, fine detail or strong texture 
will also contain components with high spatial frequencies (Figure 7. 11 ). 

Because an image may be described in terms of spatial frequencies, we can define filtering 
operations analogous to turning the bass and treble knobs on audio equipment. These 
operations are termed low pass filtering and high pass filtering. A low pass filter allows 
low spatial frequencies to pass unchanged, but suppresses high frequencies. The converse 
is true of a high pass filter. Applying a low pass filter to an image is analogous to turning 
down the treble control on your Hi-Fi equipment. The low pass filter smoothes or blurs 
the image. This tends to reduce noise, but also obscures fine detail. High pass filtering is 
analogous to turning down your Hi-Fi 's bass control. It preserves sudden variations in grey 
level, such as those that occur at the boundaries of objects, but suppresses the more gradual 
variations. It can have the adverse effect of making noise more prominent, because noise 
has a strong high frequency component. 

7.3.1 Low pass filtering 

Any convolution kernel whose coefficients are all positive will act as a low pass filter. In 
the simplest case, all the coefficients are equal-giving us , for example, the 3 x 3 and 5 x 5 
kernels 

["~ 
0.04 0.04 0.04 

"~ 1 [ 0.111 0.111 0.111 ] 0.04 0.04 0.04 0.04 0.04 
0.111 0.111 0.111 0.04 0.04 0.04 0.04 0.04 
0.111 0.111 0.111 0.04 0.04 0.04 0.04 0.04 

0.04 0.04 0.04 0.04 0.04 

Note that these kernels are already normalised. Their coefficients sum to 1, so convolution 
with them will not result in an overall brightening of the image. We can factor out the 
normalisation like so: 

~[ 1 ] [ 

1 

1 I 
- I 

2S : 

-
Now it becomes clear what these kernels do; pixel values from the neighbourhood are 
summed without being weighted, and the sum is divided by the number of pixels in the 
neighbourhood. Convolution with these kernels is therefore equivalent to computing the 
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mean grey level over the neighbourhood defined by the kernel. For this reason, these kernels 
are sometimes described as mean filters. 

The astute reader may be wondering why the mean filter is specified here as a convolution; 
after all, the average grey level in an 11 x n neighbourhood can be computed simply with 
n2 additions and one division, whereas convolution involves n2 multiplications and n2 

additions. The only real advantage of calculating a mean by convolution is that we can 
exploit hardware support for convolution, if this is available to us; ifit isn't the more direct 
calculation of the mean in a neighbourhood will be quicker. 

An example of noise reduction by low pass filtering is given in Figure 7.12. The filtering 
operation has suppressed, but has not eliminated, the noise. It has also blurred the objects of 
interest, making their edges less well defined. The filtering is non-specific, in that it reduces 
the strength of the high spatial frequency components, irrespective of whether they are due 
to noise or to meaningful structure in the image. 

Figure 7.12 Noise reduction by low pass filtering. (a) Synthetic image corrupted by 1% 
impulse noise. (b) Result of applying a 5 x 5 mean filter. 

Figure 7.13 gives another example of low pass filtering. Here, we see that larger kernels 
produce more pronounced smoothing. A high degree of smoothing can also be achieved 
through repeated application of a small kernel to an image. 

Blurring can be done with a uniform kernel, in which the coefficients are all equal, or 
with a nonunifonn kernel. The most common example of the latter is the Gaussian filter, 
in which the coefficients are samples from a two-dimensional Gaussian function, 

[
_(X2 + y2) ] 

h(x,y)=exp 2a 2 . (7.13) 

This function is plotted as a surface in Figure 7.14. The kernel coefficients diminish in size 
with increasing distance from the kernel's centre; more weight is therefore given to central 
pixels than to those in the periphery of the neighbourhood. Larger values of a produce 
a wider peak and, consequently, greater blurring. As a increases, the dimensions of the 
kernel must also increase if it is to be fully Gaussian in shape. 
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(a) (b) 

(c) 

Figure 7.13 Effect of kernel size on smoothing. (a) Original image. (b) Result of applying 
a 5 x 5 mean filter. (c) Result of applying a 15 x 15 mean filter. 

x 

Figure 7.14 A two-dimensional Gaussian function. 

There are several advantages to using a Gaussian filter. One is that the kernel is rotationally 
synnnetric, so there will be no directional bias in the amount of smoothing that is carried 
out. Another is that the Gaussian kernel is separable, which allows for fast computation 
(Section 7.2.3). Note that, unlike the standard mean filter. a Gaussian kernel's coefficients 
fall off to (almost) zero at the kernel's edges. We will consider the advantages that this 
brings in Chapter 8. 
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7.3.2 

7.3.3 

High pass filtering 

High pass filtering is accomplished using a kernel containing a mixture of positive and 
negative coefficients. An omnidirectional high pass fi lter- that is, one whose response is the 
same, whatever the direction in which grey level varies- should have positive coefficients 
near its centre and negative coefficients in the periphery of the kernel. The classic 3 x 3 
implementation is 

[ =: -~ =:] 
-I - I -I 

The sum ofthe coefficients in this kernel is zero. This means that, when the kernel is over 
an area of constant or slowly varying grey level, the result of convolution is zero or some 
very small number. However, when grey level is varying rapidly within the neighbourhood, 
the result of convolution can be a large number. This number can be positive or negative, 
because the kernel contains both positive and negative coeffic ients. We therefore need to 
choose an output image representation that supports negative numbers. 

If we wish to display or print the filtered image, we must map the pixel values onto a 
0-255 range. This is usually done in sueh a way that a filter response of 0 maps onto the 
middle of the range. Thus, negative filter responses will show up as dark tones, whereas 
positive responses will be represented by light tones. This can be seen in Figure 7.15. 

(a) (b) 

Figure 7.15 High pass filtering. (a) Synthetic image. (b) Result of high pass filter ing 
with a 3 x 3 kernel. 

Note that high pass fi ltering can also be viewed as a process of subtracting from an image 
a blurred version of that image (thereby removing the low spatial frequeneies). This is 
sometimes referred to as unsharp masking. 

High frequency emphasis 

We ean eompute a weighted sum of the original image and the output from a high pass 
filter. The result is an image in whieh high spatial frequeneies are emphasised relative to 
lower frequeneies. The degree of emphasis aehieved depends on the weighting given to the 
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original and high pass filtered images. This 'high boost filter' can be used to sharpen an 
Image. 

Note that we can perform high boost filtering in a single convolution operation, using the 
kernel 

[ =; -~ =:] (c>8). 
- I -I -I 

When the central coefficient, c, is large, convolution will have little effect on an image. As 
c gets closer to 8, however, the degree of sharpening increases. If c = 8 the kernel becomes 
the high pass filter described earlier. Figure 7.16 gives examples of high boost filtering with 
two different values of c. 

(a) (b) 

Figure 7. 16 High boost filtering of the image in Figure 7. I 3(a). (a) Result of filtering 
with central coefficient c = 12. (b) Result of filtering with c = 9. 

Implementations in Java 

New kernel classes 

The linear filtering operations discussed in the preceding sections can all be implemented 
by following the same procedure: 

1. Create a kernel , an instance of the Kernel or StandardKernel classes 

2. Create an operator, an instance ofConvolveOp or ConvolutionOp 

3. Call the operator's filterO method 

Initialising the kernel is the most tedious part of the process, particularly if the kernel 
coefficients have to be calculated (as in the case of Gaussian filters, for example). 

We can simplify matters greatly by creating specialised kernel classes for the mean filter, 
Gaussian filter, Laplacian, etc. The constructors for these new classes determine appropriate 
values for the kernel coefficients. The classes extend StandardKernel, ensuring that 
kernels can be read from or written to files, and that they can be used by Convol veOp or 
ConvolutionOp. Examples of these classes are 
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MeanKernel 
GaussianKernel 
SeparableGaussianKernel 
HighPassKernel 
HighBoostKernel 

all of which are available in the com. pearsoneduc. ip. op package. 
Listing 7.3 shows the implementation of HighPassKernel. This performs high pass 

filtering, as described in Section 7.3.2. Kernel dimensions are 3 x 3, and the coefficients 
are predefined in a static array. One notable feature in HighPassKernel is the presence 
of a main () method, which simply creates an instance of the class and calls its write () 
method to print the kernel on standard output. We can redirect standard output to store the 
kernel in a file: 

java com.pearsoneduc.ip.op.HighPassKernel > highpass.ker 

Because this kernel contains negative coefficients, it cannot be applied properly using 
ConvolveOp. Instead, we should use ConvolutionOp as follows: 

Kernel kernel = new HighPassKernel(); 
ConvolutionOp op = 
new ConvolutionOp(kernel, NeighbourhoodOp.NO _BORDER_OP, 

ConvolutionOp.SINGLE_PASS, ConvolutionOp . RESCALE_MAX_ONLY); 
Bufferedlmage output Image = convOp .filter(inputlmage, null); 

LISTING 7.3 A kernel class that performs high pass filtering. 

package com.pearsoneduc.ip.op; 

public class HighPassKernel extends StandardKernel { 

private static final float[) data = { -1.0f, -1.0f, -1.0f, 
-1.0f, 8.0f, -1.0f, 
-1 .0f, -1.0f, -1.0f }; 

'" public HighPassKernel () { 
II super(3. 3, data, 0); 
11 } 

" 
I~ public static void main(String[] argv) { 
IS StandardKernel kernel = new HighPassKernel(); 
16 kernel .writeCnew java.io.OutputStreamWriter(System.out»; 

" } 

" } 
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Any border processing strategy is acceptable, but the rescaling strategy should be 
RESCALE_MAX_ONLY. This will ensure that 0 maps onto the middle of the range in the 
output image (i.e., 128). 

A somewhat more complex example is GaussianKernel, shown in Listing 7.4. The 
constructor for this class accepts a single parameter, representing the standard deviation 
for the Gaussian function. From this, it must compute appropriate kernel dimensions, 
using static method getSize (), and then sample a Gaussian function in two dimensions, 
using static method createKernelDataO. (Since these methods are declared public 
and static, we can use them without creating an instance of the kernel, if necessary.) Like 
HighPassKernel, a main () method is provided to print the kernel to standard output. For 
a = 1.0, the following is produced: 

# convolution kernel 
994 

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0 . 0000 
0.0000 0.0000 0.0002 0.0011 0.0018 0.0011 0.0002 0.0000 0.0000 
0.0000 0.0002 0.0029 0.0131 0.0215 0 . 0131 0.0029 0.0002 0.0000 
0.0000 0.0011 0.0131 0.0586 0.0965 0.0586 0.0131 0.0011 0.0000 
0.0000 0.0018 0.0215 0.0965 0.1592 0 . 0965 0.0215 0.0018 0.0000 
0.0000 0.0011 0.0131 0.0586 0.0965 0.0586 0 . 0131 0.0011 0.0000 
0.0000 0.0002 0.0029 0 . 0131 0.0215 0.0131 0.0029 0.0002 0.0000 
0 . 0000 0.0000 0.0002 0.0011 0.0018 0.0011 0.0002 0.0000 0.0000 
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

GaussianKernel objects have normalised coefficients, so they can be used with 
ConvolveOp or ConvolutionOp to do Gaussian blurring of an image. Convol veOp will 
be faster. If the kernel is large, however, it may be more efficient to use ConvolutionOp 
together with SeparableGaussianKernel. This class is much like GaussianKernel, 
except that a kernel with a height of 1 is created. This can be used with ConvolutionOp 
if a calculation method of SEPARABLE is selected: 

Kernel kernel = new SeparableGaussianKernel(2.0f); 
BufferedImageOp op = new ConvolutionOp(kernel, 

NeighbourhoodOp.NO_BORDER_OP, 
ConvolutionOp.SEPARABLE, 
ConvolutionOp.NO_RESCALING); 

BufferedImage output Image = op.filter(inputImage, null); 

For convenience, ConvolutionOp provides a static method gaussianBlur () that carries 
out these steps. It is called with an image, a value of a and, optionally, a border processing 
strategy as parameters. (The latter defaults to NO_BORDER_OP if it is not specified.) An 
example is 

Bufferedlmage output Image = 

ConvolutionOp.gaussianBlur(inputImage, 3.0f); 

We have observed that this operation takes just under a second to execute on 266 MHz 
Pentium II hardware running Windows 95 and JDK 1.2. By comparison, the equivalent 
convolution using GaussianKernel and Convolve takes just over a second, and a non­
separable calculation with ConvolutionOp takes over fifteen seconds. 
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LISTING 7.4 A kernel class to support Gaussian low pass filtering. 

package com.pearsoneduc.ip . op; 

public class GaussianKernel extends StandardKernel { 

public GaussianKernel() { 
this(1.0f); 

} 

10 public GaussianKernel(float sigma) { 
II super(getSize(sigma), getSize(sigma), createKernelData(sigma»; 

" } 

" 
14 public static int getSize(float sigma) { 
IS int radius = (int) Math.ceil(4.0f*sigma); 
16 return 2*radius+!; 

" } 

" 
19 public static float[] createKernelData(float sigma) { 

'" 
" 

" 
" 

,.. 
H 

" 
" 
" 
" '" } 

" 

int n = (int) Math.ceil(4.0f*sigma); 
int size = 2*n+1; 
float(] data = new float [size*size] ; 

double r, S = 2.0*sigma*sigma ; 
float norm O.Of; 
intl=Oj 

for (int y - no y <= n; ++y) 
for (int x '" -nj x <= n; ++x, ++1 ) { 

r = Math , sqrt(x*x + y*y); 

} 

data[ i] '" (float) Math.exp{-r*r/s); 
norm += data[i); 

for (i = 0; i < size*size; ++i) 
da~a[i] /= norm; 

return data; 

~2 publ ic static void mainCString[] argv) { 
~J float sigma =:: 1.0f; 
44 if (argv.length > 0) 
~5 sigma =:: Float.valueOf(argv[O)) . floatValueO; 
~ StandardKernel kernel =:: new GaussianKernel(sigma); 
~7 kernel.vrite(nev java.io.OutputStreamWriter (System.out»; 

" } 

" '" } 
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Example applications 

Two complete linear filtering applications are provided on the CD. MeanFil ter per­
forms mean filtering of an image, using MeanKernel and Convol veOp. Its implemen­
tation is given in Listing 7.5. GaussianBlur performs Gaussian low pass filtering, using 
GaussianKernel and Convol veOp. (We assume here that most Gaussian filtering tasks 
will involve relatively small filters, for which Convol veOp is more efficient than separable 
convolution using ConvolutionOp.) 

LISTING 7.5 A mean f iltering application, 

import java.awt.image.*; 
import com.pearsoneduc.ip.io.*; 
import com.pearsoneduc.ip.op.MeanKernel; 
import com.pearsoneduc. ip.util. IntervalTimer; 

public class MeanFilter { 
public static void main(String[] argv) { 

if (argv.length > 3) { 

\0 try { 

" 
" 
" 

" 

" 
'" 

'" 

,m } 

} 

ImageDecoder input = ImageFile.createImageDecoder(argv[O]) ; 
ImageEncoder output = ImageFile.createImageEncoder(argv[1]); 
int w = Integer.parseInt(argv[2]); 
int h = Integer.parseInt(argv[3]); 
BufferedImage input Image = input.decodeAsBufferedImage(); 
Kernel kernel = new MeanKernel(w, h); 
ConvolveOp blurOp = new ConvolveOp(kernel); 
IntervalTimer timer = new IntervaITimer(); 
timer. start 0 ; 
BufferedImage output Image = blurOp.filter(inputImage, null); 
System.out.println("Mean filtering finished [It + 

timer. stopO + " sec] "); 
output.encode(outputlmage); 
System.exit(O) ; 

catch (Exception e) { 
System.err .println(e); 
System. exit (1); 

} 

else { 

" } 

" } 
" } 

System.err.println("usage: java MeanFilter infile outfile w h"); 
System. exit (1) ; 
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7.4 Edge detection 

One of the major applications for convolution is in edge detection. Edges can be defined 
loosely as locations in an image where there is a sudden variation in the grey level or colour 
of pixels. The contours of potentially interesting scene elements (solid objects, surface 
markings, shadows, etc.) all generate intensity or colour edges, so edge enhancement 
and detection are obvious steps to take when attempting to locate and recognise those 
scene elements. Location and recognition are far from trivial, because noise and other 
uninteresting image features can also generate edges. 

Given a noisy image, edge detection techniques aim to locate the edge pixels most likely 
to have been generated by scene elements, rather than by noise. Typically, there are three 
steps to perform: 

I. Noise reduction, where we try to suppress as much noise as possible, without smoothing 
away the meaningful edges. 

2. Edge enhancement, where we apply some kind of filter that responds strongly at edges 
and weakly elsewhere, so that edges may be identified as local maxima in the fi lter's 
output. Figure 7. 15 suggests that some kind of high pass filter is required. 

3. Edge localisation, where we decide which of the local maxima output by the filter are 
meaningful edges and which are caused by noise. 

Edge detection is a huge field of study, on which it would be possible to write an entire 
book. In the following sections, we merely consider a few techniques that are representative 
of the field as a whole. 

7.4.1 A simple edge detector 

The simplest detectors perform minimal noise smoothing and fairly crude localisation. 
They are based on the estimation of grey level gradient at a pixel. The gradient can be 
approximated in the x and y directions by 

gx(x, y) '" f(x + 1, y) - f(x -1, y), 

gy(x, y) '" f(x, y + 1) - f(x , y - 1). 

(7.14) 

(7.15) 

We can introduce a small amount of noise smoothing if we compute averages of these 
gradients over a 3 x 3 neighbourhood. This also allows us to express gradient calculation 
as a pair of convolution operations, 

where the kernels 3re 

[ 

-I 
hx = - I 

- I 

g,(x, y ) = hx * f( x , y), 

gy(x, y) = hy * f(x, y) , 

o 
o 
o l -1 

o 
- 1 

o - 1 ] o . 
I 

(7.16) 

(7.17) 
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These are known as the Prewitt kernels. A similar pair of kernels are the Sobel kernels, 

[ -I 0 I] "x = - 2 0 2 , 
-I 0 I 

These give more weight to on-axis pixels. 
Figure 7.17 shows the results of convolving the Sobel kernels with an image. Because 

the kernels contain both positive and negative coefficients, the output can be negative or 
positive. For display purposes, we map gradients of zero onto a mid-grey tone, with negative 
and positive gradients appearing darker and lighter, respectively. Clearly, the kernel hx is 
sensitive to changes in the x direction, Le., edges that run vertically, or have a vertical 
component. Similarly, the kernel h y is sensitive to changes in the y direction, i.e., edges 
that run horizontally, or have a horizontal component. But how do we combine the results 
of convolution with these two kernels to give a single measure of the presence of an edge? 

(a) (b) (c) 

Figure 7.17 Sobel edge detection. (a) Original image. (b) Convolution of image with 
h,. (c) Convolution of image with h y. 

The two gradients computed at each pixel by Equations 7.1 6 and 7.17 can be regarded as 
the x and y components of a gradient vector, 

g = [ !: ] 
This vector is oriented along the direction of change, normal to the direction in which the 
edge runs. Gradient magnitude and direction are given by 

g = jg; + g~. 

e = tan- 1 (gy), 
gx 

(7.18) 

(7.19) 

where 8 is measured relative to the x axis. The square-root operation in Equation 7.18 is 
relatively expensive, so gradient magnitude is sometimes approximated by 

g = Ig.d + Igyl· (7.20) 
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(a) (b) 

Figure 7.18 (a) The barn image. (b) Gradient magnitudes for the barn image, scaled to 

a 0~255 range and displayed as an image. 

Gradient magnitude will be large whenever gx or gy are large, i.e. , whenever there is a 
big change in grey level within the 3 x 3 neighbourhood of a pixel. Thus g measures the 
strength of an edge, irrespective of its orientation. Figure 7.18 shows an image and its 
gradient magnitudes computed with Sobel kernels and Equation 7.18. 

In the localisation step, we must identify the meaningful edges from gradient magnitude 
data. A typical (though not necessarily correct) assumption is that meaningful edges give 
rise to the strongest gradients, so a simple approach is to threshold the gradient magnitudes 
computed using Equations 7.18 or 7.20. Thresholding produces an ' edge map'- a binary 
image in which pixels set to I represent meaningful edges. Figure 7.19 shows edge maps 
created from the gradient magnitude data of Figure 7.18 using two different thresholds. 

-- /', .--A\ 
1

,,·------ , 
.,: 

. ';-::,:;~ II II 2 -' ----------------

(a) (b) 

Figure 7.19 Edge maps created by thresholding the gradient magnitudes in Figure 7.18. 
(a) Threshold of SO. (b) Threshold of 150. 
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There are three problems with this approach. First, the boundaries between scene ele­
ments are not always sharp. At sharp boundaries, there is a large change in grey level within 
a 3 x 3 neighbourhood, so gradient magnitude is high. Diffuse boundaries, however, are 
characterised by more gradual changes in grey level. The change within a 3 x 3 neigh­
bourhood at a diffuse boundary is likely to be small, so gradient magnitude will be much 
lower. We can see this in Figure 7.20, which plots profiles of gradient magnitude across 
slightly blurred and heavily blurred edges. Although both edges are clearly meaningful to 
the observer, a threshold of 60 would create an edge map in which only the sharper edge 
was represented. 

(a) (b) 
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Figure 7.20 Profiles of gradient magnitude across blurred edges. (a) Image of a slightly 
blurred square. (b) Image of a heavily blurred square. (c) Profiles of gradient magnitude 
across one edge of the squares in (a) and (b). 

A second problem is that noise can sometimes produce gradients as high as, or even 
higher than, those resulting from meaningful edges. This can be seen in Figure 7.21, which 
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(a) (b) 

Figure 7.21 Sensitivity of gradient magnitude to noise. (a) Noisy image. (b) Profile of 
gradient magnitude across image, 

plots a profile of gradient magnitude across a synthetic image to which impulse noise has 
been added. The tallest peaks in the profile were produced by a noisy pixel; the two lower 
peaks correspond to the edges of the square. 

The final problem with a simple threshold approach is that the local maximum in grey 
level gradient associated with an edge lies at the summit of a ridge. Thresholding detects 
a portion of this ridge, rather than the single point of maximum gradient. The ridge can be 
rather broad in the case of diffuse edges, resulting in a thick band of pixels in the edge map. 
This can be seen clearly in Figure 7.19. 

The Laplacian 

If we imagine an image to be a surface, with height corresponding to grey level, then it is 
clear that convolution with the Sobel kernels gives usjirst-order derivatives that measure the 
local slope ofthis surface in the x and y directions. It is also possible to compute second­
order derivatives. These measure the rate at which the slope of the grey level surface 
changes with distance travelled in the x and y directions. These second-order derivatives 
can be used for edge localisation. 

At the top of Figure 7.22 is a profile of grey level across the blurred edge of Figure 7.20(b). 
Below it, the first derivative of this profile is plotted. A broad peak is produced because 
the change in grey level is not abrupt. Below the first derivative is the second derivative. 
On the dark side of the edge, this quantity is positive. On the bright side of the edge, it is 
negative. It changes sign at the centre ofthe edge, so we can localise the edge by searching 
for a zero crossing of the second derivative. 

The Laplacian of an image f combines the second-order derivatives as follows: 

(7.21) 
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Figure 7.22 Edge detection with first- and second-order derivatives. Note the corre­
spondence between the maximum value of the first derivative, at x = 32. and the zero 
crossing of the second derivative, also at x = 32. 
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A simple, digital approximation to the Laplacian over a 3 x 3 neighbourhood is given by 
the kernel 

[ -! ~~ -! l 
which is very similar to the high pass filter described earlier. 

The Laplacian is seldom used on its own for edge detection, because it is unacceptably 
sensitive to noise. It is more useful as part ofthe Laplacian of Gaussian (LoG) filter. This 
uses a Gaussian filter to blur the image and a Laplacian to enhance edges. Localisation is 
done by finding zero crossings. 

A radially-symmetric, two-dimensional Gaussian is given by 

her) = exp (~;:), (7.22) 

with 1" = x' + )'2 The Laplacian of this is 

, (1"_"') (-r') \1 h = ,,4 exp 2,,' . (7.23) 

This function has a minimum at its origin. However, it is usual to invert the filter such that 
it has a maximum at its origin, giving it the classic 'mexican hat' shape seen in Figure 7.23. 

2 
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0.5 
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-0.5 

Figure 7.23 The inverted Laplacian-ol-Gaussian filter. 

The value of" in Equation 7 .23 determines the width ofthe filter and controls the amount 
of smoothing produced by its Gaussian component. In effect, " tunes the filter to detect 
edges at different scales (Figure 7.24). Note that the kernel used to implement a LoG 
filter should have a half-width of at least 3". LoG filtering is therefore very expensive 
computationally, even with only a modest amount of smoothing. A good approximation to 
the LoG filter is formed by subtracting two Gaussians of different widths. Gaussian filters 
are separable (Section 7.2.3), so this difference of Gaussian. (DoG) filter is an attractive 
and efficient alternative to the LoG filter. 

In order to form an edge map from LoG filter output, we must locate and mark the zero 
crossings. In practice, exact values of zero will not be found at many of the pixels in the 
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filtered image; we may therefore need to infer the presence of a zero crossing from the 
existence of two adjacent pixels with opposite signs. One of these must be marked as the 
zero-normally the one with the smallest absolute value. Figure 7.24 shows the edge maps 
created by applying LoG filters to the barn image and detecting the zero crossings. 

(a) (b) 

Figure 7.24 Edge detection in the barn image with a Laplacian-ol-Gaussian filter. 
(a) Edge map lor a = 3.0. (c) Edge map lor a = 5.0. 

The Canny edge detector 

The Canny edge detector represents a somewhat more sophisticated approach to the cre­
ation of an edge map for an image. It specifically addresses the fact that, for any edge 
detector, there is a trade-off between noise reduction and edge localisation. Improved noise 
reduction is typically achieved at the expense of good localisation, and vice versa. The 
Canny detector can be shown to provide the best possible compromise between these two 
conflicting requirements2. 

For the smoothing step, the Canny detector employs a Gaussian low pass filter. The 
standard deviation, a, determines the width of the filter and hence the amount of smoothing. 
A filter with large a will suppress much of the noise but will also smooth away the weakest 
edges. The edge enhancement step simply involves calculation of the gradient vector at 
each pixel of the smoothed image, using Equations 7.19 and 7.1 8, for example. Effic ient 
implementations of the Canny detector combine the smoothing and enhancement steps by 
convolving the image with a derivative of Gaussian kernel. It is also possible to exploit 
Gaussian separability, and compute x and y gradients with one-dimensional kernels. 

The localisation step has two stages: non-maximal suppression and hysteresis 
thresholding. Non-maximal suppression thins the wide ridges around local maxima in 
gradient magnitude down to edges that are only one pixel wide. Algorithm 7.7 shows 

2 The Canny detector is optimal for step edges in the presence of Gaussian noise. Of course, real edges arc not 
simple steps, and real noise is not purely Gaussian in nature. Nevertheless, the Canny detector is observed to 
give good results with real images. 
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ALGORITHM 7.7 Non-maximal suppression in the Canny edge detector 

Create an output image, gs , with the same dimensions as g 
for all pixel coordinates, x and y, do 

Approximate 8(x , y) by fI, one of the angles 0', 45°, 90', 135' 
i! g(x, y) < g at neighbour in direction (j or g(x, y) < g at neighbour in direction 
8 + 180° then 

g,(x , y)= O 
else 

g,(x, y) = g(x, y) 
end if 

end for 

(a) 

--- -_._...-. 

(b) 

Figure 7.25 Non-maximal suppression in the Canny edge detector. (a) Gradient 
magnitudes computed with (J = 1.0. The image has been inverted for greater clarity. 
(b) Non-maximal suppression of the gradient data in (a). 

how this is done. It assumes that we have already computed gradient magnitude and 
direction, and that these data are available as two images, g and 8. Figure 7.25 shows 
gradient magnitudes for the barn image, before and after non-maximal suppression using 
the algorithm. 

We have noted already the problems associated with applying a single, fixed threshold to 
gradient maxima. Choosing a low threshold ensures that we capture the weak yet meaningful 
edges in the image, but it may also result in an excessive nwnber of 'false positives': 
gradient maxima caused by noise rather than by interesting scene elements. Too high a 
threshold, on the other hand, will lead to excessive ITagmentation of the chains of pixels 
that represent significant contours in the image. Hysteresis thresholding offers a solution 
to these problems. It uses two thresholds, Tlow and Thigh. The higher of these thresholds 
is used to mark the best edge pixel candidates. We then attempt to grow these pixels into 
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contours by searching for neighbours with gradient magnitudes higher than 1iow. In some 
versions ofthe technique [such as 25, 36], the search is conducted over all eight neighbours 
of an edge pixel; in others [46, for example] , only the neighbours along a line nonnal to the 
gradient orientation at the edge pixel are considered. 

This technique can reduce the number of false positives because edges are tracked only 
if at least one pixel has a gradient magnitude exceeding Thigh, which can be made quite 
large. It also reduces the fragmentation of contours in the edge map by allowing significant 
fluctuations to occur in gradient magnitude on an edge (if Tlow is suitably small). 

Figure 7.26 compares use of a single threshold with use of hysteresis thresholding for 
gradient magnitudes computed from the barn image with (J" = 1.0. Figure 7.27 shows edge 
maps computed by a Sobel edge detector with the same thresholds. 

(a) (b) 

(c) 

Figure 7.26 Normal thresholding and hysteresis thresholding of thinned gradient mag­
nitude data. <a) Single threshold of 100. (b) Single threshold of 50. (e) Hysteresis thresh­
olding with Tlow = 50 and Thigh = 100. 
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(a) (b) 

Figure 7.27 Sobel edge maps of the barn image. (a) Gradient magnitude threshold of 
100. (b) Threshold of SO. 

Implementations in Java 

Kernels 

Four kernels that can be used for simple gradient calculation are provided in the com . 
pearsoneduc. ip. op package: 

HorizontalPrewittKernel 
VerticalPrewittKernel 
HorizontalSobelKernel 
VerticalSobelKernel 

These should be used with ConvolutionOp rather than ConvolveDp, because the kernels 
contain negative coefficients. If the output from convolution is needed for subsequent 
calculations, the convolve 0 method should be used rather than filter 0, to avoid any 
loss of precision caused by rescaling of output data. 

Complete edge detectors 

Implementations are provided in the com. pearsoneduc, ip, op package of the Sobel and 
Canny edge detectors. A Sobel edge detector application is also available on the CD. 

SobelEdgeOp implements StandardGreyOp. Its default constructor creates an operator 
that computes gradient magnitude using a square-root, as in Equation 7.18, and performs 
no thresholding of gradient magnitude data. Other constructors allow a threshold and 
the alternative gradient magnitude calculation method of Equation 7.20 to be specified. 
(On the hardware used to develop SobelEdgeOp, computing gradient magnitude by Equa­
tion 7.20 is about three times faster than computing gradient magnitude by Equation 7.18.) 
SobelEdgeOp overrides the filterO method so that it 

1. Computes gradient magnitudes using the desired calculation method 

2. Rescales gradient magnitudes to a 0-255 range 
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3. Thresholds gradient magnitudes if required 

CannyEdgeOp also implements StandardGreyOp. There are three differents ways of 
creating a CannyEdgeOp object, illustrated by tbe following examples: 

CannyEdgeOp opl new CannyEdgeOp(2.0f); 
CannyEdgeOp op2 ~ new CannyEdgeOp(2.0f, 50, 100); 
CannyEdgeOp op3 ~ 

new CannyEdgeOp(2.0f, 50, 100, CannyEdgeOp.ABS_MAGNITUDES); 

Here, opl will smooth an image with a Gaussian low pass filter of width (T = 2.0, com­
pute gradient at each pixel using Equations 7.18 and 7.19 and then perform non-maxi mal 
suppression of gradient magnitudes. No thresholding will be done. Operator op2 is essen­
tially the same as opl, except that it performs hysteresis thresholding witb Tiow = 50 and 
high = 100 on the thinned gradient magnitudes. Operator op3 differs from op2 only in 
that gradient magnitudes are computed by Equation 7.20. 

CannyEdgeOp provides methods that can be used to retrieve gradient magnitude and 
orientation data afrer a call to fil ter (): 

BufferedImageOp op ~ new CannyEdgeOp(2.0f, 50, 100); 
BufferedImage edgeMap ~ op.filter(image, null); 
BufferedImage maglmage ~ op.getGradientMagnitudeImage(); 
Bufferedlmage orient Image = op . getGradientOrientationlmage(); 

7.5 Rank filtering 

Convolution is not the only way of carrying out spatial filtering. Non-linear techniques 
also exist. A number of these are known collectively as 'order statistic' filters or rank 
fiiters. The idea behind rank filtering is simple. We compile a list of the grey levels in the 
neighbourhood of a given pixel, sort this list into ascending order and then select a value 
from a particular position in the list to use as the new value for the pixel. The new values 
must be stored in another image; we cannot perform the operation in place. 

As with all neighbourhood operations, special consideration must be given to the borders 
of the image. The strategies that were discussed for convolution in Section 7.2.1 can also 
be applied to rank filtering. Rank filters have the advantage of not being kernel-based, so 
there is no problem with filtering over a smaller neighbourhood at the corners and sides of 
the image. 

7.5.1 Median filter 

The most common rank filter is the median filter, in which we select the middle-ranked 
value from a neighbourhood as our output value. For a 3 x 3 neighbourhood, the middle 
value is fifth in the list of sorted grey levels; for an II x II neighbourhood with II odd, the 

middle value is at position L 'f J + I. 
The median filter is particularly good at removing certain types of noise. Figure 7.28(a) 

shows a synthetic image in which random impulse lIoise affects 5 per cent of the pixels. 
Impulse noise forces a pixel's value to one of the extremes of the range- O or 255 in the 



176 Neighbourhood operations 

(a) 

(c) 

Figure 7.28 Noise suppression by mean and median filtering. (a) Image corrupted by 
five per cent impulse noise. (b) Result of 3 x 3 mean filtering. (c) Result of 3 x 3 median 
filtering. 

case of8-bit images3 Figure 7.28(b) shows the result of smoothing the noisy image using 
a 3 x 3 mean filter. The amplitude of the noise has been reduced, but the image still has a 
distinctly mottled appearance. Furthermore, tbe main features of interest-the edges-have 
been blurred. Figure 7.28(c) shows the result of applying a 3 x 3 median filter to the image 
in (a). The impulse noise has been eliminated completely, and the effect on other features 
is minimal. 

We can see how the median filter is able to eliminate impulse noise by examining the 
computation that is done in a single 3 x 3 neighbourhood of an image. Figure 7.29 shows a 
small portion of the image in Figure 7.28(a), with a 3 x 3 neighbourhood outlined. We can 
guess that the central pixel should have a value of 64, but it has been affected by impulse 

3 Here, all noisy pixels have the value 255. Randomly choosing one or the olher of the extremes for each noisy 
pixel gives rise 10 a pattern often referred to as 'salt and pepper' noise. 
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Figure 7.29 A 3 x 3 neighbourhood within a portion of the noisy image in Fig. 
ure 7.28(a). 

noise. The new value obtained for this pixel using a 3 x 3 mean filter is 

64 + 64 + 64 + 64 + 255 + 255 + 64 + 64 + 255 
- '-------'---'------'-----:,--'----'---'--'-- = 128 

9 

(rounding to the nearest integer) 

so mean filtering has not removed the noise completely. To apply a median filter, we place 
the grey levels from the neighbourhood in a list, 

{64,64,64,64,255,255,64, 64,255), 

and sort the list into ascending order, producing 

(64, 64. 64, 64, 64 ,64, 255.255 ,255). 

The median from this set of values is 64. The noisy values have migrated to the end of the 
list and therefore do not affect the selection of a new pixel value. 

Clearly, median filtering can eliminate impulse noise only if the noisy pixels occupy less 
than half the area of the neighbourhood. We can see this in Figure 7.30, which shows the 
effects of median filtering on an image corrupted by 20% impulse noise. In Figure 7.30(h), 
a 3 x 3 median filter has been applied. The noise density is high enough that, in a few 
locations, a 3 x 3 neighbourhood contains more than four noisy pixels. Consequently, some 
noise remains in the filtered image. In Figure 7.30(c), a 9 x 9 median filter has been applied. 
With a larger neighbourhood, local noise density stays closer to the global average of 20%, 
with the result that no noisy pixels pass through the filter. 

It is evident from Figure 7.30( c), and from the magnified views shown in Figure 7.31, that 
features of interest do not necessarily survive median filtering unscathed. It is important to 
remember that median filtering is non·specific; any structure that occupies less than half of 
the filter 's neighbourhood will tend to be eliminated. The damage seen in Figure 7.31 is, 
in part, a result of the shape of the filter. Figure 7.32 shows how a square neighbourhood 
erodes the corners of a rectangular object and how a cross-shaped neighbourhood leaves 
thcm unaffected. 
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(c) 

Figure 7.30 Median filtering of very noisy images. (a) Image with 20% impulse noise. 
(b) Result of 3 x 3 median filtering. (c) Result of 9 x 9 median filtering. 

(a) (b) 

Figure 7.31 (a) Magnified portion of Figure 7.30(c), showing damage to the rectangle's 
corners. (b) Same portion of the original image. before the addition of noise and median 
filtering. 
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Ca) Cb) 

Figure 7.32 Effect of neighbourhood shape on the results of median filtering. Ca) Square 
neighbourhood contains 5 background pixels and 4 object pixels, so central pixel takes 
on the background value. (b) Cross-shaped neighbourhood contains 4 background pixels 
and 5 object pixels, so central pixels remains unchanged. 

Performance 

The sorting of neighbourhood grey levels into ascending order is a significant computational 
burden, particularly when the neighbourhood is large. Consequently, we must select a 
sorting algorithm carefully. Relatively small differences in performance can be magnified 
because sorting is done many thousands, or even millions, oftimes to process a single image. 
Quicksort is widely acknowledged to be, on average, the best general-purpose sorting 
algorithm [43], and an efficient implementation is available in Java 2 as a static method of 
the java. util. Arrays class, so this is an obvious choice for an implementation of median 
filtering in Java. However, Quicksort is known to perform poorly, relative to certain other 
sorting algorithms, on small lists. This point is significant, because a 3 x 3 neighbourhood, 
the most common that we use in spatial filtering, yields a small list consisting of only 
nine values. Figure 7.33 bears this out. It shows that (in this particular environment, at 
least) insertion sort performs slightly better than Quicksort for 3 x 3 filters. Quicksort is 
marginally better for 5 x 5 filters, and far superior to insertion sort for larger filters. 

But do we really need to use a sorting algorithm? An alternative approach is possible, 
in which we calculate the histogram of grey levels in a neighbourhood and then search this 
histogram to find the median. The median will be the grey level at which the cumulative 
frequency equals or exceeds half the neighbourhood size. Figure 7.33 shows execution times 
for a median filter that implements this approach. For a 3 x 3 median filter, the sorting 
approach is clearly faster; for a 5 x 5 filter, there is very little difference in performance; 
for neighbourhoods larger than 5 x 5, sorting becomes more expensive than computing and 
searching the hi stogram. 

The histogram technique can be improved if we exploit the fact that the neighbourhoods 
of adjacent pixels overlap to a large degree. Rather than computing a completely new 
histogram for the neighbourhood surrounding a pixel at Cx , y) , we can simply adjust the 
histogram that we computed at Cx - I , y) . If the neighbourhood has dimensionSil x II, then 
the histogram must lose counts for the n pixels no longer in the neighbourhood and gain 
counts for the 11 pixels that have moved into the neighbourhood. The median, likewise, can 
be updated from the previous estimate. 
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Figure 7.33 Execution times for median filtering of a 512 x 512 image, using two 
different sorting techniques and a histogram-based technique. Times were obtained using 

JDK 1.2 with JIT compilation enabled, on a 266 MHz Pentium II running Windows 95. 

Minimum and maximum filters 

The minimum filter is a rank filter in which we select the bottom-ranked grey level from 
the neighbourhood (i.e., the minimum grey level) as the output value. The maximum filter 
performs similarly, except that we select the top-ranking grey level from the neighbourhood 
(i.e., the maximum grey level) as the output value. 

Figures 7.34 and 7.35 show the results of minimum and maximum filtering, respectively, 
in 3 x 3 and 7 x 7 neighbourhoods. Minimum filtering causes the darker regions of an 
image to swell in size and dominate the lighter regions, whereas maximum filtering has the 
converse effect. Both operations have a non-linear blurring effect on an image. 

<a) (b) 

Figure 7.34 Effect of minimum filtering on the barn image of Figure 7.13. (a) 3 x 3 
neighbourhood. (b) 7 x 7 neighbourhood. 
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Ca) Cb) 

Figure 7.35 Effect of maximum filtering on the barn image. Ca) 3 x 3 neighbourhood. 
Cb) 7 x 7 neighbourhood. 

Performance 

The general idea of a rank filter is that we sort grey levels from the neighbourhood into 
ascending order4

. An implementation of a minimum or maximwn filter might well use this 
generic approach, but determining the minimum or maximum of a set of values does not 
require that they be sorted. [11 fact, we can determine the minimum or maximwn of a set 
of n values by making Il - 1 comparisons- whereas the average cost of Quicksort is on 
the order of 11 10g2 11. This is borne out in Figure 7.36, which plots execution time versus 
neighbourhood size for two implementations of a minimum filter: one using Quicksort 
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Figure 7.36 Execution times for minimum filtering of a 512 x 512 image, using sorting 
and straight comparison. Benchmarking was carried out using the software and hardware 
described earlier. 

4 Although, as we have seen, algorithms that do not involve sorting can be devised. 
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7.5.3 

7.5.4 

and the other simple comparisons. Clearly, there is no compelling reason to use sorting in 
a minimum or maximum filter-unless some other order statistic like the median is also 
required. 

We will encounter minimum and maximum filters once again, in a different guise, in 
Chapter II. 

Range filter 

The range filter simply outputs the difference between the maximum and minimum grey 
levels in a neighbourhood centred on a pixel. Essentially, it is an omnidirectional, non-linear 
edge detector. An example can be seen in Figure 7.37. Note, however, that cdges detected 
by this filter are not well-localised, particularly when the neighbourhood is large. 

Figure 7.37 Non-linear edge detection by range filtering. 

Implementation of rank filters in Java 

When developing a Java implementation of convolution in Section 7.2.5, we took care 
to factor out those aspects of the calculation that apply generally to all neighbourhood 
operations and not merely to convolution. This code exists in the NeighbourhoodOp class, 
which we can extend into a new class that pelfonns rank filtering. A design for th is class, 
RankFilterOp, is shown graphically in Figure 7.38. Three constructors are provided to 
create RankFil terOp objects. All three require that the rank of the filter be specified. The 
dimensions ofthe neighbourhood in which filtering takes place can optionally be specified. 
(A default of3 x 3 is used if they are noL) We can also specify a particular border processing 
strategy. (The default is NO_BORDER_OP.) The filterO method performs rank filtering, 
using the sort 0 method of java. util. Arrays to place neighbourhood grey levels in 
ascending order. 
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Figure 7.38 Classes for rank filtering. 

We have already noted that sorting values from each pixel's neighbourhood is not neces­
sarily the optimal approach to use in rank filtering. The solution adopted here is to subclass 
RankFilterOp and override filter () with a more efficient implementation. This is done 
in classes MedianFilterOp, MinimumFilterOp and MaximumFilterOp, two of which 
are shown in Figure 7.38. Creation of instances of these classes is similar to creation 
of a RankFil terOp, except that the rank of the filter is now implicit and need not be 
specified. MedianFil terOp implements a histogram-based approach to finding the me­
dian. MinimumFilterOp and MaximumFilterOp determine the minimum and maximum, 
respectively, by means of comparisons rather than sorting. 

Example applications 

A number of rank filtering applications are provided on the CD. RankFil ter uses a 
RankFilterOp to carry out generalised rank filtering in neighbourhoods of arbitrary di­
mensions. MedianFilter, MinFilter and MaxFilter use their associated operators to 
perform more efficient median, minimum and maximum filtering, respectively, in neigh­
bourhoods of arbitrary dimensions. Each ofthese programs is controlled from the command 
line. 

You can experiment more readily with the performance of different rank filtering 
algorithms by running the MedianTest and MinTest programs. The former uses 
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Figure 7.39 A GUI·based tool for rank filtering. 

RankFilterOp and MedianFilterOp to compare execution times for median finding 
techniques based on sorting and histogram searching; the latter uses RankFil terOp and 
MinimumFil terOp to compare execution times for minimum finding by sorting and by 
comparisons only. 

Finally, the RankFil terTool application provides a graphical user interface to display 
an image and the results of applying a 3 x 3 rank filter to that image. The rank of the filter 
is selected via a set of radiobuttons. Figure 7.39 shows this program in action. 

7.6 Hybrid filters 

Some spatial filters are hybrids of linear and non-linear filters. The classic example is the 
,,-trimmed mean filter. This filter sorts values from a neighbourhood into ascending order, 
discards a certain number of these values from either end of the list and outputs the mean 
of the remaining values. If the ordered set of values is II .( .f2 ~ ... ( 1112. then the 
a-trimmed mean is 

(7.24) 

The parameter a is the number of values removed from each end of the list. It can vary 

between 0 and "';'. When" = 0, no values are removed from the list and the filter behaves 

as a straightforward mean filter; when a = 4I, all values are removed but the middle one, 
and the filter behaves exactly like a median filter; for intermediate values of", the filter acts 
as a compromise between a mean filter and a median filter. 
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The value of the a-triuuned mean lies in the fact that mean filters suppress additive 
Gaussian noise reasonably well but perform poorly on impulsive noise, whereas the opposite 
is true of median filters. In images afflicted by both types of noise, the a-trimmed mean 
filter performs better than a pure mean or pure median filter. 

7.7 Adaptive filters 

The spatial filters described in this chapter all perform the same calculation at almost every 
pixel in an image. However. the properties of an image can vary spatially; thus, a filter that 
perfonns well in one part of an image is not guaranteed to perform well in another part of 
that image. For example, in an image corrupted by Gaussian random noi se, a mean filter 
will be effective in those parts ofthe image that are supposed to be homogeneous, but will 
have an adverse blurring effect in regions that are meant to be heterogeneous due to the 
presence of edges. Problems ofthis nature can be minimised by using an adaptive filter-a 
filter whose behaviour changes in response to variations in local image properties. 

Figure 7.40 Minimal mean squared error filtering of noisy images. (a) Synthetic image 
corrupted by Gaussian random noise, (Y = 20. (b) Results of 5 x 5 mean filtering. 
(c) Output from a 5 x 5 MMSE filter. 



186 Neighbourhood operations 

Most adaptive filters compute local grey level statistics within the neighbourhood of a 
pixel and base their behaviour on this information. The classic example is the minimal 
mean square error filter, or MMSE filter. This filter computes 

,,2 
g(x, y ) = f(x, y) - 2( n ) [j(x, y) - lex, y)], 

a x, y 
(7.25) 

where at; is an estimate of noise varianc~, (72 ex, y) is the grey level variance computed for the 
neighbourhood centred on (x, y) and f (x, y) is the mean grey level in that neighbourhood. 

In supposedly homogeneous regions of an image, noise will be the sole cause of variations 
in grey level; thus, ,,2(x, y) = "'~ and Equation 7.25 reduces to 

g(x, y) = f(x, y). 

In the vicinity of edges, we expect (f2 ex, y) to dominate local noise variance, resulting in a 
small ratio of variances and a value for g ex, y) that is close to the original value at that pixel, 
f (x, y) . This behaviour can be seen in Figure 7.40, which shows a portion of a synthetic 
image to which Gaussian random noise has been added, along with the output from mean 
and MMSE filters applied to that image. The mean filter has suppressed the noise but has 
also blurred the edges significantly; the MMSE filter has preserved the edges, and also the 
noise in the immediate vicinity of the edges. 

An implementation of the MMSE filter is provided as the class MMSEFil terOp in the 
com. pearsoneduc. ip. op package. A progra~ calledMMSEFil ter that uses this operator 
can also be found on the CD. 

7.8 Further reading 

The technique of circular indexing and its role in convolution are discussed further by 
Lyon [29] and by Umbaugh [48], amongst others. 

Umbaugh [48] discusses the performance of mean filters based on statistics other than 
the standard arithmetic mean. 

There is a vast literature on the subject of edge detection. An article by Prewitt [401 gives 
a perspective on early work in this field. The Laplacian of Gaussian filter was first described 
by Marr and Hildreth [30]. (In fact, it is sometimes referred to as the Marr-Hildreth filter.) 
Further information on the Canny edge detector can be found in the original paper by 
Canny [8]. Parker [36] presents a thorough experimental comparison of the Canny edge 
detector with another optimal edge detector due to Shen and Castan [44]. 

The 'running median' technique mentioned in Section 7.5 was introduced by Huang et 
al. [24] and has been revisited by Astola and Campbell [3]. Pitas [37] gives an implemen­
tation in C. Pitas also presents implementations of fast minimum and maximum filters. 

Crane [II] considers how blurring, sharpening and median filtering operations might be 
performed on colour images. Sangwine and Horne [41] present further information on this 
topic. 
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7.9 Exercises 

I. Convolution can produce an image which has a narrow border of black pixels. What 
effect will this have on an operation such as histogram equalisation? 

2. Use the classes described in this chapter to create applications that perform high pass 
and high boost filtering. 

3. Convolve the Sobel x and y kernels with the following 3 x 3 neighbourhood: 

10 15 17 
\I 100 101 
20 103 97 

Then compute the magnitude and direction of the gradient vector. 

4. Modify the GaussianBlur application from the CD so that it switches to separable 
convolution when filter size gets sufficiently large. 

5. The mean filter is a linear filter but the median filter is not. Explain why this is the case. 

6. Given the 3 x 3 neighbourhood 

176 177 172 
174 2 170 
171 172 170 

calculate a new value for the central pixel using the mean and median filters. Compare 
and comment on your results. 

7. "Median filtering may reduce the number of occupied bins in a histogram. It will never 
increase the numbers of occupied bins." Is this true? Explain your reasoning. 

8. Improve the histogram-based MedianFilter class so that it exploits overlapping neigh­
bourhoods. (Consult the references [3, 24, 37] for guidance ifrequired.) Perform bench­
mark testing of this improved class with other implementations based on the quicksort 
routine provided with Java 2 and your own implementation of insertion sort. (See Shaf­
fer [43] or other texts on algorithms for details.) Use the results of benchmarking to 
create a hybrid median filter that uses the quickest technique for any given neighbourhood 
size. 

9. Implement an alpha trimmed mean filter. (Inherit from RankFil terOp and use the 
filter() implementation in that class as the basis of your new filter() method.) 
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Images represent variations oj brightness or colour in space. We saw in Chapter 7 
how these spatial variations can be manipulated by operations such as convolution. 
But we a;'e not restricted to processing images in the spatial domain. There exists 
an alternative represenration of an image based on the frequencies oj brightness or 
colollr variation in that image. We can convert an image into a spectrum of different 
frequency components and convert this spectral representation back into a spatial 
representation without any loss a/in/ormation. We can also process the image in the 
fi'equency domain by manipulating its spectrum. In this chapter. we shall explore 
the nature o/thefi-equency domain, consider the computational techniques used to 
move between domains and examine the ways in which images can be changed by 
manipulating their spectra. 

8.1 Spatial frequency 

We noted in Section 7.3 that areas of an image in which grey level varies rapidly with 
distance travelled contain high spatial frequencies; conversely, areas in which grey level 
varies slowly contain only low spatial frequency components. But what, precisely, do we 
mean by the term 'spatial frequency'? 

Frequency has a precise meaning when \\'e consider periodic functions. A periodic 
function such as the sinusoid in Figure 8.1 consists of a fixed pattern or cycle that repeats 
endlessly in both directions. The length of this cycle, L , is known as the period of the 
function. The frequency of variation is the reciprocal of the period. If the variation is 
spatial and L is a distance, then l / L is termed the spatial frequency of the variation. A 

188 
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L 

Figure 8.1 A sinusoidal function, characterised by a period (L), an amplitude (A) and a 
phase (¢). 

periodic variation is characterised by two further parameters: an amplitude and a phase. 
The amplitude (labelled A in Figure 8.1) is the size of the variation-the height of a peak 
or depth ofa trough. The phase (¢ in Figure 8.1) is the position of the start ofa cycle, 
relative to some reference point (e.g., the origin). A sine function has ¢ = 0, whereas a 
cosine function has 4> = !f. 

What does a sinusoidal variation of image intensity look like? We investigate this by 
defining a sinusoidal function and rendering it as an image. A suitable function is 

f(x,y) = 128 +Asin - - +¢ . (
2rrux ) 
N - I 

(8.1) 

This function generates a sinusoidal variation along the x axis, about a mean grey level of 
128. (This offset is necessary because 8·bit greyscale images cannot represent the negative 
values produced by a sine function.) Amplitude, A, is a value in the range [1,127]. N is 
the width of the image, in pixels. The parameter u is a dimensionless spatial frequency, 
corresponding to the number of complete cycles of the sinusoid that fit into the width of 
the image. (Dividing by N would give the spatial frequency in units of cycles per pixel.) 
Lastly, ¢ is the phase. 

Figure 8.2 shows the image generated by Equation 8. 1 with parameter values N = 100, 
u = 3, A = 127 and ¢ = O. As expected, there are three complete cycles of variation visible 
in the image (equivalent to a spatial frequency of 0.03 cycles per pixel), and the variation 
in image brightness spans the full range of 0-255. Figure 8.3 shows images generated by 
varying each of the parameters u, A and ¢ in turn. In Figure 8.3(a), u = 6, producing six 
cycles of variation in the image. We have doubled the spatial frequency, with the result that 
grey level fluctuates more rapidly as we move across the image. In 8.3(b), we have reduced 
A by 60%, resulting in weaker fluctations in grey level-although the rate of change in 
grey level remains unchanged. In S.3(c), we have introduced a phase shift of ~ (i.e., 90°), 
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Figure 8.2 An image with a horizontal sinusoidal variation in grey level. 

(a) (b) 

(e) 

Figure 8.3 Effect of changing frequency, amplitude and phase for the sinusoid in Fig­
ure 8.2. (a) Doubling of frequency. (b) 60% reduction in amplitude. (c) 90° phase shift. 

turning the sine wave of Figure 8.2 into a cosine pattern without affecting the strength or 
the frequency of the variation in grey level. 

Of course, we can also have sinusoidal variation in the y direction, or in both the x and 
the y directions simultaneously. We can introduce a second spatial frequency parameter, v, 
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Figure 8.4 More images of sinusoids. (a) u = O. v = 4. (b) u = 3. v = 5. 

representing the number of cycles of variation that span the height of the image, to deal with 
this. Figure 8.4(a) shows a sinusoidal image generated with It = a and It = 4; Figure 8.4(b) 
shows an image generated with u = 3 and v = 5. 

Evidently, it is possible to determine the frequencies present in images with a very simple, 
periodic pattern of grey level variation; for sinusoids like those of Figures 8.3 and 8.4, we 
can simply count peaks and troughs. However, such images are highly artificial. It is not at 
all obvious how we can measure spatial frequency in real images; indeed, real images often 
seem to lack any strong periodicity, leading us to question whether the notion of spatial 
frequency has any meaning. Fortunately, Fourier theory, discussed in the following section, 
comes to our rescue, providing us with the means of analysing an image and measuring the 
frequencies that are present. 

8.2 Fourier theory 

8.2. 1 Basic concepts 

Techniques for the analysis and manipulation of spatial frequency are based on the work of 
the eighteenth century French physicist Jean Baptiste Joseph Fourier. Fourier developed a 
representation of functions, based on frequency, that is of considerable importance in many 
branches of science and engineering. Fourier's theory considers sinusoidal variations (Le. , 
si ne and cosine waves), of the kind dcpicted in Figure 8.1 . The key idea is that any periodic 
function, however complex it might appear, can be represented as a sum of these simpler 
sinusoids. This solves the problem of whether it is meaningful to think of spatial frequency 
in a real, highly complicated image. Although there may be little regularity apparent in 
such an image, it can be decomposed into a set of sinusoidal components, each of which 
has a well-defined frequency. 

A set of sine and cosine functions having particular frequencies are chosen for the rep­
resentation. These are termed the basis functions of the representation. A weighted sum 
of these basis fnnctions is called a Fourier series. The weighting factors for each sine and 
cosine function are known as the Fourier coefficients. We can write the summation as 
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follows: 

~ (2nnX) (2nnX) 
f(x) = f;;oa"cos - L- +b"sin - L-

~ (2nIIX) (2nIIX) = ao + ~all cos -L- + bn sin -L- . 

(8.2) 

The index II in this equation is the number of cycles ofthe sinusoid that fit within one period 
of f (x). Thus, II can be considered as a dimensionless measure of the frequency of a basis 
function. Equation 8.2 indicates that a function with period L can be represented by two 
infinite sequences of coefficients. 

Newcomers to these concepts may need convincing that a sunnnation of smoothly varying 
functions such as sinusoids can synthesise the sharp discontinuities and relatively homo­
geneous regions that might be found in an image. A simple example will illustrate that a 
Fourier series has this capability. Consider a summation of sine functions obtained from 
Equation 8.2 with ao = 0, a" = 0 for all nand 

b - {~ 
11 - 0 

for 11 odd, 
for n even. 

Figure 8.5 shows the effect of increasing the number of terms in the series. With only 
one term, we see a simple sine wave. With fifteen terms, it is clear that the summation is 
approaching a square wave. We can surmise that it is possible for a sum of sinusoids to 
produce regions of no change and regions of sudden change in an image. 

I' 
I 

"~--~~ 

Figure 8.5 Examples of a Fourier series consisting only of sine functions. Top: one 
term. Middle: three terms. Bottom: fifteen terms. 
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Extension to two dimensions 

The notion of a Fourier series is equally valid in two dimensions. Now, the basis functions 
are two-dimensional sine and cosine functions. Figure 8.6 plots one of these basis functions 
as a surface. A Fourier series representation of a two-dimensional function, f (x, y), having 
a period L in both the x and the y directions, can be written 

~ ~ [2rr(IIX + VY)] . [2rr(lIX + VY)] 
f(x,y) = LL-au,v cos L + bll ,v sm L . 

11 = 0 l'=O 

(8.3) 

Here, 11 and v are the number of cycles fitting into one horizontal and vertical period, 
respectively, of f(x, y). We can regard the Fourier series representation of f(x, y) as a 
pair of two-dimensional arrays of coefficients, each of infinite extent. 
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Figure 8.6 Example of a two-dimensional sinusoidal basis function with u = 3, v = 5. 

The Fourier series in Equation 8.3 can be used to represent any image. We can visualise 
the basis functions as 'basis images'-rather like the sinusoidal images that we used to 
explore the idea of spatial frequency in Section 8.1. Figure 8.7 shows the first few basis 
images for the sine component of the series; a similar set of cosine basis images is also used. 
The basis image for 11 = 0, V = a is constant, with a value of ao.o. It represents the mean 
grey level of the image. Higher tenns in u and v introduce the fiuctations about this mean 
level that are needed to represent changes in grey level across the image. The coefficients 
(ill. u and bu , u determine the relative contributions of each basis image to the representation. 
They provide useful information on the spatial frequencies that are present in the image. 
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u 

1 2 3 

Figure 8.7 Some of the basis images used in a Fourier representation of an image. 

8.3 The discrete Fourier transform 

Fourier theory provides liS with a means of determining the contribution made by any 
basis function to the representation of some function f(x). The contribution is determined 
by projecting f(x) onto that basis fun ction. This procedure is described as a Fourier 
transform. When applying the procedure to images, we must deal explicit ly with the fact 
that an image is 

• Two-dimensional 

• Sampled 

• Of fini te extent 

These considerations give rise to the discrete Fourier transform (DFT). The DFT of an 
N x N image can be written 

I ~~ [(2"(IIX+V)'») . . (21r(IIX +VY» )] 
F(u , v) = N L.. L.. I(x.),) cos N +Jsm N ' 

x=o y=o 
(84) 
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or, noting that cos e + j sin e can be written in exponential form, 

1 N - l N - J 
F(lI , v) = N L L f (x , y )e-J2rr (vx+ vy )/N 

x=o y=O 

(8.5) 

Note that F(u, v) is a complex number; we are now dealing with a set of complex coeffi­
cients, rather than two sets of real coefficients, as was the case with the Fourier series in 
Equation 8.3. 

For any particular spatial frequency specified by 1I and v, evaluating Equation 8.5 gives us 
the contribution that the corresponding pair of basis images makes to a Fourier representation 
of the image f; in essence, it tells us how much of that particular frequency is present in 
the image. Of course, to build up a complete picture of the relative importance of different 
frequencies, we must evaluate the equation for all u and v. It is usual to apply the term 
'Fourier transform' to the process ofcaiculating all the values of F(lI , v)-or, indeed, to 
the values themselves. 

There also exists an inverse Fourier transform that converts a set of Fourier coefficients 
into an image. It has a form very similar to the forward transform: 

1 N-I N- I 

f(x , y ) = N L L F (u. v )eJ2n (vx+vy )/ N 

x=o y=O 

(8.6) 

The only material difference is the sign of the exponent. Comparing Equations 8.5 and 8.6, 
it is clear that the forward transform of an N x N image yields an N x N array of coefficients. 
Since the inverse transform reconstructs the original image from this set of coefficients, they 
must constitute a complete representation of the information present in the image. When 
we manipulate F(u, v), we say that we are processing the image in the frequency domain; 
conversely, when we manipulate pixel values I(x, y), we are processing the image in the 
spatial domain. Although these manipulations may result in the loss of information from 
the image, the transformation from one domain to the other via a forward or inverse Fourier 
transfonn does not, in itself, result in any information loss. 

8,3.1 The spectra of an image 

We have already noted that F(II, v) is a complex number. Its real and imaginary parts are 
not particularly informative in themselves; it is far more useful to think of the magnitude 
and phase of F(u , u). We note that 

F(u, v) = R(lI, v) + jl(u, v) = IF(u, v)lej¢(u.v), (8.7) 

where R(u , v) and 1(1I, v ) are the real and imaginary parts, rcspectively, of F(lI , v ) , 

IF(lI , v)1 is the magnitude and !/J (1I. v ) is the phase. Magnitude and phase are given by 

IF (II, v) 1 = j R2(1I. v ) + 12(1I, v), 

!/J(1I, v) = tan-I [I (I/ , V)]. 
R(lI , v) 

(8.8) 

(8.9) 

Equations 8.8 and 8.9 allow us to decompose an array of complex coefficients into an array 
of magnitudes and an array of phases. The magnitudes correspond to the amplitudes of the 
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basis images in our Fourier representation. The array of magnitudes is termed the amplitude 
spectrum of the image. Likewise, the array of phases is termed the phase spectrum. When 
the term 'spectrum' is used on its own, the amplitude spectrum is normally implied. This is 
because the phases are generally less significant for the purposes of interpretation. Another 
term that is used is power spectrum, or spectral density. The power spectrum of an image 
is simply the square of its amplitude spectrum, i.e. , 

(8.10) 

We can render the spectra of an image as images themselves, for the purposes of visual­
isation and interpretation. Section 8.4 gives further details of how this is done. Figure 8.8 
shows examples of an amplitude spectrum and a phase spectrum of an image. Looking at 
these examples, it is tempting to think that the amplitude spectrum contains al1 the use­
ful information. The phase spectrum appears to be somewhat random and noisy. This is 
deceptive; if we attempt to reconstruct the image with an inverse Fourier transform after de­
stroying either the phase infonnation or the amplitude information, then the reconstruction 
wil1 fail. This is il1ustrated by Figure 8.9. The amplitude spectrum is clearly sensitive to the 

(b) 

(c) 

Figure B.B A synthetic image and its spectra. (a) Image. (b) Amplitude spectrum. (c) 
Phase spectrum. 



8.3.2 

The discrete Fourier transform 197 

(a) (b) 

Figure 8.9 Reconstructions of an image from its spectra. (a) After destroying phase 
information. (b) After destroying amplitude information. 

presence of particular features in an image, but the phase spectrum encodes their location 
in that image. Without phase information, the spatial coherence of the image is disrupted 
and it becomes impossible to recognise features of interest; without amplitude information, 
we can no longer determine the relative brightnesses of those features, but we can at least 
see the boundaries between them, which aids recognition. Because phase is so crucial to 
maintaining image integrity, most image processing operations leave the phase spectrum 
untouched and manipulate only the amplitude spectrum. 

The fast Fourier transform 

Calculating a single value of F (II , v) by Equation 8.5 involves a swnmationover all pixels in 
the image. Ifthe image has dimensions N x N, then this is an O(Nl ) operation. However, 
there are N 2 values of F(u, v) to calculate, so the overall complexity ofa DFT is O(N4 ). 

This is very costly; Crane [II] cites execution times 001 minutes for the DFT ofa 256 x 256 
image and 12 days for the DFT of a 1024 x 1024 image, assuming that the multiplication 
of a complex number consumes I microsecond of CPU time. Clearly, it is not practical to 
compute the DFT in this manner. 

Fortunately, a much faster method exists, known as the fast Fourier transform (FFT). 
The classic two-dimensional FFT algorithm takes advantage ofthe separability ofthe Fourier 
transform, which allows us to perfonn a one-dimensional FFT along each row oftbe image 
to generate an intermediate array, followed by another one-dimensional FFT down each 
column ofthis array to produce the final result. The one-dimensional FIT algorithm uses 
another trick to speed up calculations. It so happens that a Fourier transform of length N 
can be written as the sum of two Fourier transforms, each of length N /2. If N is a power 
of two, this decomposition can be applied recursively until we reach the point where we 
are computing transforms of length 2. The overall cost of this procedure is O(N log2 N), 
compared wilh O(N2) for a directly calculated one-dimensional transform. 

Exploiting separability alone reduces the complexity of a two-dimensional Fourier trans-
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Figure 8.10 Cost of calculating the Fourier transform of an image. 

form from O(N4) to O(NJ). When we introduce the one-dimensional FFT, the cost of 
transforming an N x N image becomes O(N2 10g2 N). Figure 8.10 compares the cost 
functions graphically. Note that the y axis is logarithmic; the difference in performance is 
therefore huge. We can see that, for a 512 x 512 image, a two-dimensional FFT is roughly 
30,000 times faster than direct calculation. 

The classic two-dimensional FFT requires that both image dimensions are powers of two. 
If necessary, we must enforce this by either cropping the image or by padding it out to the 
appropriate dimensions with zero-valued pixels!. Cropping the image discards data and 
may significantly change the spectrum of that image, but it reduces the time required to 
calculate the transform; padding with zeros does not affect the spectrum, but it will increase 
computation time. 

The input to standard implementations of the FFT is an array of values. If a complex data 
type is available, the array may be ofthis type. Some implementations specify two floating­
point arrays, one for the real part of the data and one for the imaginary part; others expect 
data to be passed into the routine in a single floating-point array, wi th real and imaginary 
values interleaved. Since an image consists of real, rather than complex, numbers, we must 
copy the pixel values to the storage used for the real part of the data, however it may be 
specified, and set the imaginary part to zero. Because the forward and inverse transforms 
are so similar, a single FFT routine is usually provided to compute both transforms. A 
flag of some kind indicates the direction of the transform. Since the only difference in the 
calculations is the sign of the exponent (e je for the forward transform, e- je for the inverse 
transform), the sign itself is often used to specify the direction. The FFT routine may store 
its output in a separate array; however, many implementations use the array that provided 
the input data, overwriting its values with the results of the transfonn. 

Actually, there is a third option; we can usc other, more complex algorithms that do not require the dimensions 
to be powers of two. 
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Properties of the Fourier transform 

Periodicity and conjugate symmetry 

The DFT of an image has some rather unusual properties. One is periodicity. F(u . v) 
repeats itself endlessly in both directions, with a period of N. This means that 

F(u, v) = F(u + N, v) = F(u , v + N) = F(u + N, v + N). (8 .11 ) 

The N x N block of coefficients that we compute from an N x N image with our two­
dimensional FFT algorithm is a single period from this infinite sequence. Another property, 
arising because the image is real-valued whereas the DFT operates on complex numbers, 
is complex conjugate symmetry. This means that 

IF (Il . v)1 = IF( - u, - v)l · (8 .12) 

In other words, there exist negative frequencies, which (as far as the amplitude spectrum is 
concerned) are mirror images of the corresponding positive frequencies. 

The periodicity and conjugate symmetry properties of the DFT give rise the situation 
depicted in Figure 8.11. Here we see a portion of an infinite, periodic F(u, v), along with 
the single period that is computed by a DFT (shown as a square with a thick black border). 
We can infer that, for our computed values of F(u, v), frequency increases up to u = N / 2 
and decreases thereafter; the half of the spectrum for which u > N /2 is a 'double reflection' 
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" I 
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Figure 8.1 I A portion of an infinite, periodic spectrum exhibiting complex conjugate 
symmetry, and the sample of the spectrum that is computed by the DFT. 
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Figure 8.12 Unshifted amplitude spectrum of an image. Frequency increases from the 
corners towards the centre of the spectrum. 

of the half with It :5 N / 2. The same applies to frequencies either side ofv = N / 2. This 
can be seen clearly in the spectrum of Figure 8.12. 

The interpretation of spectra is made much easier if we centre the results of the DFT on 
the point u = 0, v = 0, such that frequency increases as we move in any direction away 
from the origin. We can do this by a circular shifting of the four quadrants of the array; 
alternatively, we can exploit the shift theorem of the Fourier transform, which teUs us that 
we can achieve the same result by making the input values alternately positive and negative 
in both the x and y directions prior to computing the transform. Multiplying f(x, y) by 
( - l)x+y will achieve this. The effect of shifting can be seen by comparing Figure 8.12 
with Figure 8.8(b). 

Windowing 

We have seen that the Fourier transfonn is periodic, but there is also an implied periodicity 
in the image. Fourier theory assumes that the array of pixels supplied as input to the DFT 
is merely one period of an image that repeats itself infinitely in the x and y directions 
(Figure 8.13). An equivalent way of thinking about this is to regard the image as being 
wrapped around on itself, such that the left side touches the right and the top touches the 
bottom. (This is exactly the assumption made when using circular indexing to deal with 
the problem of convolution at the borders of an image. The justification for this strategy 
is therefore that it makes convolution consistent with operations in the frequency domain, 
which make the same assumption.) Ifthere is any mismatch between the left and right sides 
of the image, or its top and bottom, then the Fourier transform sees this as an abrupt change 
in the image that can be accommodated only through distortion of the spectrum. 

The problem of spatial discontinuity at the borders of the image can be minimised, if 
desired, by windowing the data prior to computing the DFT. Windowing involves modu­
lating pixel values in such a way that they fall smoothly to zero at the edges of the image. 
Multiplying the data by a windowing function will accomplish this. There are a number 
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Figure 8.13 Spatial discontinuities caused by considering an image to be periodic. 

of standard windows. The Bartlett window, for instance, is defined in two dimensions by 

we,) = {~ - (rjrm,,) r ~ rmax , 
(8.13) 

where r is the distance from the centre of the image and rmax is its maximum value. It has 
a conical shape. The Hanning window, defined for r ~ '"max by 

we,) = 05 - OScos [IT (I - r~J l (8.14) 

is somewhat smoother. The Blackman window, 

we,) = 0.42 - 0.5cos [:". (I - r~J ] +008cos [2IT (1 - r~J J, (8.15) 

has a similar shape but is narrower than the Hanning window. Figure 8.14 plots these 
windowing functions as they would be applied to a 128 x 128 image. 

Figure 8.15 shows a simple, synthetic image exhibiting discontinuity at its borders, 
together with the spectrum computed from unmodified data and the spectrum computed 
after applying the Hanning window. The unwindowed spectrum contains a bright horizontal 
line and a bright vertical line, both passing through the origin. These features are the direct 
result of the mismatch between opposite sides of the image. The windowed spectrum lacks 
these artefacts and, consequently, the features caused by genuine structure in the image can 
be seen more clearly. 
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Figure 8.14 Windowing functions for a 128 x 128 image. Top: Bartlett window. Middle: 
Hanning window. Bottom: Blackman window. 
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(c) 

Figure 8.15 Spectral distortion and its reduction by windowing. (a) An image. (b) 
Its spectrum, computed without windowing. (c) Spectrum computed using a Hanning 
window. 

Java implementation 

The com. pearsoneduc . ip. op package provides a single class called ImageFFT to support 
operations in the frequency domain. Instances of this class can 

• Compute the forward and inverse Fourier transform using an FIT algorithm 

• Manage the complex data used as the input and output of the FFT 

• Allow the results of a Fourier transform to be inspected and manipulated in a controlled 
manner 

Unlike many of the classes described so far, the ImageFFT class does not lend itself to 
implementation as a BufferedlmageOp; instead, it provides a set of methods that can 
be used to implement operations in the frequency domain as BufferedlmageOp classes. 
Some of these methods are listed in Table 8.1. 

To illustrate the use of the I mageFFT class, we present two simple examples, in the 
form of stat ic methods belonging to some unspecified class. The first example, shown in 
Listing 8.1, computes the spectrum of an image using a Hanning window and returns the 



204 The frequency domain 

Table 8.1 Selected methods olthe ImageFFT class. 

Method Description 

ImageFFTCBufferedlmage img) Creates an ImageFFT for the specified image, without 

windowing the image data. 

ImageFFT(Bufferedlmage img, iot win) 

String toString() 

int getWidthO 

int getHeight () 

int getWindowO 

boolean isSpectral() 

void transform() 

Bufferedlmage tolmage(Bufferedlmage 
img) 

Bufferedlmage tolmage(Bufferedlmage 

img. iot bias) 

Bufferedlmage getSpectrum() 

Bufferedlmage getUnshiftedSpectrum() 

float getMagnitude(int u, iot v) 

float getPhase(int u, int v) 

void setMagnitude(int u, int v, float 

mag) 

void setPhase(int u, iot v, float 

phase) 

Creates an ImageFFT for the specified image, with the 

specified windowing function (see Table 8.2). 

Returns a string describing the object. 

Returns the width of the dataset. (This will be greater 

than the width of the input image if its width is not a 

power of two.) 

Returns the height of the dataset. (This ",rill be greater 

tban the height of the image if its height is not a power 

of two.) 

Returns an integer indicating the current windowing 

function. 

Returns true if the data are spectral (i .e., last transform 

was in the forward direction), false if the data are 

spatial. 

Computes a forward or inverse Fourier transform, as 

appropriate. 

Converts stored data into an image, using the supplied 

image as a destination or creating a new image and 

returning it. 

Converts stored data into an image, using the supplied 

image as a destination or creating a new image and 

returning it. The specified bias level will be added to 

the results. 

Returns the amplitude spectrum in image form, shifted 

such that a frequency of zero is at the centre and scaled 

logarithmically. 

Returns the amplitude spectrum in image form, scaled 

logarithmically. 

Returns the magnitude of the Fourier transfonn at the 

specified spectral coordinates. 

Returns the phase of the Fourier transform at the spec­

ified spectral coordinates. 

Changes the magnitude of the Fourier transform at the 

specified spectral coordinates. 

Changes the phase of the Fourier transform at the spec" 

ified spectral coordinates. 
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Table 8.2 Constants defined by the lmageFFT class. 

Name Value 
NO_WINDOW 1 

BARTLETT_WINDOW 2 
HAMMING_WINDOW 3 

HANNING_WINDOW 4 

LISTING 8.1 Use of lmageFFT to compute the amplitude spectrum of an image. 

public static Bufferedlmage computeSpectrum(Bufferedlmage image) 

} 

throws FFTException { 
lmageFFT fft = new lmageFFT(image, lmageFFT.HANNlNG_WlNDOW); 
fft.transform(); 
return fft.getSpectrum(); 

spectrum as another image. Line 3 creates an instance of lmageFFT to perform this task. 
An exception is thrown if the image is not an 8-bit greyscale image. When an ImageFFT 
object is created, the following things happen: 

• Image data are copied into the internal storage of the lmageFFT object. 

• The data are padded with zeros in the appropriate dimension if that dimension is not a 
power of two. 

• The data are windowed, if a second integer parameter has been passed to the constructor 
and its value specifies a known windowing function. 

Line 4 computes a forward Fourier transform, via a call to the transform 0 method. Line 
5 retrieves and returns the spectrum in the form ofa Bufferedlmage object. Note that a 
Fourier transform must always be requested explicitly when using lmageFFT. Ifline 4 had 
been omitted, then getSpectrumO would have thrown an FFTException. 

The second example, shown in Listing 8.2, is a routine that synthesises a sinusoidal 
image by direct manipulation of its spectrum. A 128 x 128 image ofthe appropriate type is 
created in lines 2 and 3. By default, all its pixels will have a value ofzero. Line 4 creates an 
ImageFFT associated with this image, and Line 5 computes its Fourier transform. Since all 
pixels were zero in the input image, the spectrum of this image will be blank. Line 7 adds a 
spike to the spectrum, representing a sinusoid with II = 20, v = 8. Line 8 adds the complex 
conjugate reflection of this spike. Line 9 retums us to the spatial domain by performing 
an inverse Fourier transform. Finally, line 10 copies the data stored inside the lmageFFT 
back into the original image. A bias of 128 is added to values as they are copied, to offset 
the sinusoidal variation such that it lies within a 0-255 range. Note that the tolmage 0 
method can also be called with null in place of an image-in which case, a new image is 
created and passed to the caller as the return value of the function. 
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LISTING 8.2 Use of ImageFFT to synthesise a sinusoidal pattern. 

public static Bufferedlmage createSinusoid() throws FFTException { 
Bufferedlmage image = 

} 

new Bufferedlmage(128 , 128, Bufferedlmage.TYPE_BYTE_GRAY); 
ImageFFT fft = new ImageFFT(image); 
fft.transform(); 
final float mag = (float) 1.0e6; 
fft.setMagnitude(20, 8, mag); 
fft.setMagnitude(108, 120, mag); 
fft.transiorm()j 
fft.tolmage (image , 128); 
return image; 

Investigating spectra 

Display 

Amplitude spectra are normally visualised as 8-bit greyscale images. In order to do this, 
we must scale the magnitudes computed from Equation S.S to lie in a 0-255 range. The 
obvious approach of multiplying by a scaling factor 

255 

IF(II, v)lm" 

will be of little use, because the spectrum is typically dominated by a few values that are 
very much larger than all the others. These values tend to be found at the low frequencies, 
towards the centre of the spectrum; indeed, I F(O, 0) 1 is usually the largest value of all , so 
one approach is to scale values linearly but to exclude IF(O, 0)1 from the determination of 
IF(lI. v)lmax. A more common approach is a logarithmic mapping of the data, analogous 
to that performed on images to enhance dark features (see Chapter 6). We calculate 

IF(II, v)I' = C 10g[IF(II, v)1 + I] , (8. 16) 

where C is chosen so that the results occupy the fullS-bit range. We add one to IF(II , v)1 
because the spectrum can be zero in places, and the logarithm of zero is undefined. Note 
that Equation 8.16 is applied for display purposes only; we retain a copy of the original 
spectrum and it is this that we modify if we wish to process the image. 

Three Java programs that visualise spectra are provided on the CD. The first of these, 
Spectrum, has a command line interface. It takes an input fi lename and an output filename 
as arguments , plus an optional integer parameter specifying the window to be applied to 
the data. Meaningful values for this parameter are those given in Table 8.2. If some other 
value is specified, or no value is given, no windowing will be carried out. The input fi le 
is an image and the output file is the shifted spectrum of that image, rendered as an image 
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itself. The Spectrum program was used to generate all of the amplitude spectra that appear 
in this chapter. 

The second program, SpectrumViewer, has a graphical user interface. It loads an image 
from a file named on the command line, computes the FFT of that image and then displays 
the image and its spectrum, side by side. The spectrum will be computed from windowed 
data if a window is specified as a command line parameter. Meaningful parameter values 
are those given in Table 8.2. The spectrum can be toggled between its shifted or unshifted 
forms. The user can interact with the spectrwn by moving the cursor over it. As the cursor 
moves, the information panel beneath the spectrum is updated with 

• The spatial frequency parameters II and v for the point under the cursor 

• The magnitude of F(ll , v) at that point 

• The phase of F (ll, v) at that point 

Figure 8.16 shows SpectrumViewer in action. 

~ SpeclrumViewer I!IiIil EJ 

t!;; shifted 0 unshifted U 10 v 1 magnJtude 2.084096£4 t!hase 1.596l 

Figure 8. 16 The SpectrumViewer application. 

The third program, SpectralProbe, resembles SpectrumViewer, in that it displays an 
image and a spectrum computed from that image. However, the spectrum is derived from 
a small, square region, rather than the entire image. This makes it possible to investigate 
variations in the spatial frequency content oftbe image by comparing the spectra obtained 
at different locations. The region can be centred on a given location by clicking at that point 
on the image. A control panel is provided, from which the user can set region dimensions 
to 16 x 16, 32 x 32 or 64 x 64 and select a windowing function from the options listed in 
Table 8.2. Figure 8.17 shows the application's interface. 
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8.4.2 
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Figure 8. 17 The SpectralProbe application. 

Interpretation 

We can gain insight into the the relationship between the spatial and frequency domains by 
comparing simple images with their corresponding amplitude spectra. 

Spectra of simple periodic patterns 

A purely sinusoidal pattern of varying grey level, such as that of Figure 8.18(a), is, from 
the perspective of the Fourier transfonn, the simplest image possible. This is because it 
corresponds to a single basis image. We might therefore expect its spectrum to be featureless 
apart from a bright spot at one point, corresponding to the frequency ofthe sinusoid. What 
we actually see is three bright spots [Figure 8.18(b)]. One ofthese spots occurs at precisely 
the position we would expect, from the frequency of the pattern. A 'mirror image' of this 
spot is also present, due to the complex conjugate symmetry of the Fourier transform. The 
third bright spot is at the origin. This point represents a zero-frequency, i.e., constant, 
component of the image. It is needed in Fourier analysis because sines and cosines can 
only represent variation about a mean of zero, whereas images have a mean grey level that 
is non-zero. 

The spectrum of the pattern in Figure 8.18(a) is relatively simple because the image 
is reasonably well sampled. The spectrum becomes more complicated if the pattern is 
nndersampled. Figure 8.18(c) simulates undersampling of the sinusoid by averaging over 
4 x 4 blocks of pixels and assigning the average value to each pixel in the block. Aliasing 
artefacts are clearly visible in the new image, and in its spectrum, also [Figure 8.18(d)]. 
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Figure 8,18 Spectra of simple sinusoidal patterns, (a) Sinusoid with u = 10, v = 20, 
(b) Corresponding spectrum, showing complex conjugate symmetry and a constant com­
ponent at (0,0). (c) Simulated undersampling of the sinusoid in (a). (d) Corresponding 
spectrum, showing aliasing. 

Spectra of edges 

We have observed that points of sudden change in an image are characterised by high spatial 
frequencies. This is evident if we use the SpectralProbe application to compare the 
spectrum ofa homegeneous region near an edge with the spectrum ofa region that includes 
tbe edge. Figure 8.19 gives examples of these spectra. The spectrum of the homogeneous 
region contains a bright spot at its centre, indicating that the region is dominated by low 
frequencies. The spectrum of the region containing the edge is spanncd by a stripe of high 
values, indicating the presence of a wide spread of frequencies. 

The sharpness of an edge determines the balance of spatial frequencies that are present. 
Blurred edges arc not characterised by as wide a range of spatial frequencies as sharp 
edges. We can see this in Figure 8.20, which shows the spectra for sharp and blurred edges. 
Amplitudes diminish rapidly as we move away from the centre of the spectrum for a blurred 
edge, but the spectrum for a sharp edge has large amplitudes spanning its entire width . 
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(a) (b) (e) 

Figure 8.19 Effect of an edge on a spectrum. (a) Image, showing a uniform 32 x 32 
region and a 32 x 32 region containing an edge. (b) Windowed spectrum of the uniform 
region. (c) Windowed spectrum of the region containing the edge. 

(b) 

(d) 

Figure 8.20 Spectral characteristics of sharp and blurred edges. (a) A sharp edge. (b) 
Spectrum of a sharp edge. (e) A blurred edge. (d) Spectrum of a blurred edge. 
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Figure 8.21 A square. transformed versions of that square, and their corresponding 
spectra. 

Spectra of simple shapes 

Finally, we consider the spectra of two simple shapes: a square and a circular disc. A 
square (Figure 8.21 (a) has a pair of edges running horizontally and a pair of edges running 
vertically. Its spectrum (Figure 8.21(b) has a vertical stripe produced by the horizontal 
edges and a horizontal stripe produced by the vertical edges. (Other features in the spectrum 
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are produced by the corners.) Translating the square to a different part ofthe image will have 
no effect on its amplitude spectrum, although it will change the phase spectrum. Scaling 
the square does have an effect on the amplitude spectrum, however. When the square is 
smaller (Figure 8.21(c», features in the spectrum become larger (Figure 8.21(d», and vice 
versa. When the square is rotated (Figure 8.21(e», its spectrum undergoes the same rotation 
(Figure 8.21(!). 

Figure 8.22 shows a disc and its spectrum. The spectrum has the same circular synunetry 
as the disc itself. We can understand how this comes about by considering a line passing 
through the centre of the disc. This line crosses two edges, just like a horizontal or vertical 
line crossing the sides of the square in Figure 8.21(a). These two edges will contribute 
a single bright stripe to the spectrum, rather like the horizontal or vertical stripe in the 
spectrum of the square, but with the same orientation as that of the line. We can define 
any number of these lines, having any orientation we choose-so the spectrum of the disc 
will be a superposition of the spectra all of these lines, giving the structure seen in Fig­
ure 8.22(b). Another way of thinking about this is to imagine the spectrum of Figure 8.21 (d) 
rotated through 3600

; the structure that this 'sweeps out' as it rotates will resemble that of 
Figure 8.22(b). 

(a) (b) 

Figure 8.22 (a) Circular disc. (b) Spectrum. 

8.5 Filtering of images 

We saw in Chapter 7 that images can be filtered in the spatial domain by operations such 
as convolution. Convolution with the appropriate kernel can blur or sharpen an image. We 
can infer from this that the operation suppresses or enhances certain spatial frequencies 
relative to others, but we cannot quantify the effect that it has, because the operation takes 
place in the spatial domain. The frequency domain is the more natural domain for filtering, 
because we specify precisely the effect that a filter has on the spatial frequencies present 
in an image. Moreover, filtering in the frequency domain is simpler, computationally, than 
convolution in the spatial domain. 
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Filtering can be expressed generally as the point-by-point multiplication of the spectrum 
by a filter transfer function. We can write 

G(t<. v) = F(lt, v)H(lt, v). (8.17) 

where F is the spectrum of the image, H is the filter transfer function and G is the filtered 
spectrum. An inverse Fourier transform of G must be computed in order to see the results 
of filtering as an image. Remember that we are dealing with complex numbers here. so the 
multiplication in Equation 8.17 could, in theory, affect both the magnitude and phase of 
F(u. v). In practice, most filters are zero-phase-shift filters; that is, they affect magnitude 
rather than phase. We will assume that this is the case in the remainder of this section. 

There is a fundamental relationship between filtering done by convolution in the spatial 
domain and filtering done by multiplication in the frequency domain. This is expressed by 
tbe convolution theorem, which states that 

(8.18) 

The left-hand side ofthis expression represents the convolution of an image, f, with a kernel, 
h. The right-hand side of the expression represents the product of the Fourier transform 
of the image, F, and the Fourier transform of the kernel, H. The symbol *, which links 
the two sides. indicates that they form a 'Fourier transform pair'; the left-hand side can be 
converted into the right-hand side by a Fourier transform, whereas the right-hand side can 
be converted into the left-hand side by an inverse Fourier transform. 

Equation 8.18 tells us that convolving an image with a given kernel has the same effect 
on an image as mUltiplying the spectrum of that image by the Fourier transform of the 
kernel. Any result achievable by convolution in the spatial domain can also be obtained 
by a multiplication in the frequency domain, and vice versa. This means that we always 
have two different ways of carrying out linear filtering operations. Given a kernel, we 
can convolve that kernel with the image, or we can filter in the frequency domain via the 
following procedure: 

I. Compute the Fourier transform of the image 

2. Compute the Fourier transform of the kernel 

3. Multiply the two transforms together 

4. Compute the inverse Fourier transform of the product 

In step 3. the multiplication is done on a point-by-point basis, which means that the trans­
forms of the kernel and the image must have the same dimensions. We accomplish this by 
padding out the kernel with zeros prior to computing its transform. 

Although it may seem strange to perform this rather complicated sequence of operations 
when we have a kernel that can be used directly for convolution, significant computational 
benefits can accrue from working in the frequency domain. Consider, forex.ruple, an N x N 
image filtered by an II x n mask. In the spatial domain, filtering requires approximately 
N2n2 multiplications and a similar number of additions. In the frequency domain, however, 
filtering (step 3 above) requires only N 2 multiplications. Of course, there is a significant 
cost associated with FFT computation, but if n is large enough the total cost of filtering in 
the frequency domain falls below that of operating in the spatial domain. 
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8.5.1 low pass filtering 

A low pass filter suppresses high spatial frequencies. Recalling that frequency increases 
outward from the centre of a shifted spectrum, we can see that a low pass filter must force 
F(u. v) to zero at some distance from the centre. Decreasing this distance will result in 
more frequencies being suppressed, increasing the blurring effect of the filter. 

The simplest type of low pass filter is the ideal low pass filter. (The tenn 'ideal filter 
comes from electrical engineering and refers to the fact that such filters cannot be imple­
mented using real electronic components; it does no! imply that such filters are the best 
choices for filtering.) The filter has a sharp cut-off at some distance from the centre of 
the spectrum. Frequencies below this critical radius pass through unaffected and all other 
frequencies are blocked. The filter transfer function is 

H (lI, v) = 
{

I , 

0, 

r(1I, v) ~ 1'0, 

r(/{, v) > ro, 
(8.19) 

where 1'0 is the filter radius and r(u, v) is the distance from the centre of the spectrum, 

r(/{, v) = .ju2 + v2 (8.20) 

Figure 8.23 plots Equation 8.19 as a surface, showing clearly the cylindrical shape of the 
ideal low pass filter and the sharp cutoff in response at the filter radius. Figure 8.24 gives 
an example of the application of Equation 8.19. It shows an image, its spectrum before 
and after filtering, and the image generated by an inverse Fourier transform of the filtered 
spectrum. 

Application of an ideal low pass filter has the expected effect of blurring the image, but 
it also introduces ripple-like artefacts. This phenomenon, known as ringing, is a direct 
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Figure 8.23 Transfer function of an ideal low pass filter. 
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(a) (b) 

(c) (d) 

Figure 8.24 Example of ideal low pass filtering. Ca) Input image. Cb) Spectrum of input 
image. (c) Spectrum after ideal low pass filtering with ro set to 25% of spectrum's radius. 
(d) Output image. 

consequence of the sharp cutoff in response of the ideal low pass filter. But how does 
this give rise to a ripple-like effect in the image? According to the convolution theorem 
(Equation 8.18). multiplication ofthe spectrum by a filter has the same effect as a convolution 
of the image with a kernel that is the inverse Fourier transform of that filter. The inverse 
Fourier transform of the sharply defined ideal low pass filter has the shape depicted in 
Figure 8.25. The radial variation is that ofa 'sine function', sin(r) / r. We must imagine a 
convolution kernel whose coefficients are samples from this function. Such a kernel will 
have large positive coefficients at its centre, producing the expected smoothing effect, but 
these will be surrounded by a ring of smaller, negative coefficients. This kernel would 
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Figure 8.25 Shape of the spatial convolution kernel that corresponds to an ideal low 
pass filter in the frequency domain. 

interact with edges in the image to produce a rippled effect. 
To avoid ringing, we can use a low pass filter with a transfer function that falls smoothly 

to zero. A classic example is the Butterworth low pass filter of order 11, defined by 

H (li . v) = -;-:--;--:----:--:-= 
1+ [r(lI, v) / 1"0]2,,' 

(8.21) 

Here, filter radius ro no longer defines a sharp cutoff frequency; instead, it represents the 
distance at which H (1I, v) has fallen to one-half of its maximum value. Figure 8.26 plots 
the transfer functions of order-I and order-3 Butterworth low pass filters. As the order of 
the filter increases, the lrolloff' in filter response with frequency becomes steeper and the 
filter becomes more like an ideal low pass filter. Figure 8.27 shows the results of applying 
an order-l Butterworth low pass filter to the image of Figure 8.24(a). The filter radius 1"0 is 
again set to 25% of the spectrum's radius. Comparing the results with those from a low pass 
filter, we can see that the filter has a less pronounced blurring effect, and also that ringing 
is absent from the filtered image. 

Many other types of filter transfer function will perform low pass filtering. A notable 
example is a Gaussian function. The Fourier transform of a Gaussian is another Gaussian. 
A Gaussian filter is smooth and well-behaved spectrally whether we apply it in the spatial 
domain, by convolution, or in the frequency domain, by multiplication. We can contrast 
this with the case of filters shaped like rectangular or cylindrical boxes. Applying a filter 
of this type in the frcquency domain induces a ripple-like distortion of the filtered image; 
similarly, applying a box-shaped filter in the spatial domain induces ripples in the spectrum 
of the filtered image. 
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Figure 8.26 Transfer functions of the Butterworth low pass filter. Top: n = I . Bottom: 
n = 3. 

Figure 8.27 Result of Butterworth low pass filtering. 
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8.5.2 

8.5.3 

High pass filtering 

We can define an ideal high pass filter, too. Frequencies up to the cutoff frequency are 
suppressed, whereas frequencies beyond this point pass through unchanged. The transfer 
function is 

H(II, v) = {
o, 
I, 

r(ll, v) < rO, 

r(u, v) ): 1'0-
(8.22) 

This filter has an inverted cylindrical shape, as seen in Figure 8.28. As with the ideal low 
pass filter, the sharp cutoff leads to ringing in the filtered image. This effect can be avoided 
by using a filter with a smooth rolloff in response, such as the Butterworth high pass filter, 

I 
H (II, v) = , . 

I + [1'0 / 1' ( 11 , v)]-" 
(8.23) 

Figure 8.29 plots the transfer functions of order-l and order-3 Butterworth high pass filters. 
As the filter order increases, the filter increasingly resembles an ideal high pass filter. 
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Figure 8.28 Transfer function of an ideal high pass filter. 

Band pass and band stop filtering 

A band pass filter passes a specific range of frequencies whilst suppressing others. A 
band stop filter (or ' band reject' filter) has the opposite effect, suppressing a particular 
range of frequencies whilst passing all other frequencies. A band stop filter is, in effect, 
a combination of a low pass filter of radius r low and a high pass filter of radius rhigh. with 
thigh> r low -

We can specify a band pass or band stop filter using a pair of radii or, more usefully, 
using the radius of the band centre and its width. The transfer function of a Butterworth 
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Figure 8.29 Transfer functions of the Butterworth high pass fil ter. Top: n = I. Bottom: 
n = 3. 

band stop filter specified in this manner is 

H.,(r) = 2n' 
1+ [Qr / (r2 - r& )] 

(8.24) 

where r = -J u' + v2• ro is the radius of the band centre and 1'2 is the band width. The 
corresponding band pass filter is given by 

Hp(r) = I - H, (r). (8.25) 

An order- ! Butterworth band pass filter is plotted in Figure 8.30. 
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Figure 8.30 A Butterworth band pass filter with n = I, ro = 32 and rl = 10. 

Removal of periodic noise 

More selective filtering is possible by 'editing out' specific frequencies from the spectrum. 
This approach can be used to remove structured, periodic noise from an image. An ex­
ample is the interference patterns sometimes observed when electromechanical devices are 
operated close to video equipment. An electric motor will cause interference with a char­
acteristic frequency that is related to the speed of the motor. This interference manifests 
itself in the image as a superimposed periodic pattern of varying brightness. If the pattern 
is sinusoidal in nature, the spectrum of the image will have a pair of narrow spikes that can 
be removed by zeroing amplitudes in the area of each spike. Ifpossible, there should be a 
smooth transition from the zeroed area to the surrounding spectrum. Figure 8.31 shows an 
example of noise removal using this technique. 

Implementations of filters in Java 

The ImageFFT class provides support for low pass, high pass, band pass and band stop 
filtering operations using the ideal or Butterworth filter types. For example, an order-2 
Butterworth low pass filter can be applied to an image using the following Java code: 

ImageFFT fft = new ImageFFT(inputlmage); 
fft.transform(); 
fft. butterworthLowPassFilter(2 , r); 

fft.transform(); 
BufferedImage output Image = fft.toImage(null); 

The parameter r is the filter radius, normalised to lie in the range [0, 1]. A radius of I 
represents the maximum radius attainable by a filter that fits wholly within the spectrum. 
To apply a different filter, we need only replace the third line of this code fragment with the 
appropriate method call, from the options listed in Table 8.3. 
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Ca) 

(c) 

Figure 8.31 Removal of periodic noise. (al Image corrupted by a periodic noise pat· 
tern. (b) Central part of the image's spectrum, showing spikes caused by the noise pattern. 
(c) Image produced after removing noise spikes from the spectrum. 

Table 8.3 Filters supported in ImageFFT. Parameter r is the filter radius. For band 
pass and band stop filters, w is the band width. For Butterworth filters, n is the order of 
the filter. 

void idealLowPassFilter(double r) 

void idealHighPassFilter(double r) 

void idealBandPassFilter(double r , double w) 
void idealBandStopFilter(double r, double w) 
void butterworthLowPassFilter(double r) 

void butterworthLowPassFilter(int n, double r) 

void butterworthHighPassFilter{double r) 

void butterworthHighPassFilter(int n, double r) 

void butterworthBandPassFilter(double r, double 

void butterworthBandPassFilter(int n, double r, 

void butterworthBandStopFilter(double r, double 

void butterworthBandStopFilter(int n, double r, 

0) 

double 0) 

0) 

double 0) 
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8.6 

" 
" 
" 

The filters provided by ImageFFT can be incorporated easily into the filterO 
method of classes that implement BufferedlmageOp. One example of this, called 
ButterworthLowPassOp, is provided in the com. pearsoneduc . i P . op package. 

Other filters can be implemented by using the setMagni tude 0 method ofImageFFT to 
modify particular frequencies in the spectrum. For example, the routine in Listing 8.3 zeros 
an 111 x 11 region ofa spectrum centred on coordinates (Ii , v). This code could be used to 
remove periodic noise from an image (Section 8.5.4). Note that spectral data are maintained 
by ImageFFT in unshifted form. Thus, for an N x N spectrum, frequency increases up to 
II = N / 2 and decreases thereafter, and similarly for v. 

LISTI NG 8.3 Java code to zero a rectangular region of a spectrum. 

public static void zeroRegion(ImageFFT fft. tnt ll, int v, tnt ro, int n) { 

} 

try { 

} 

int m2 = m/2; 
int n2 .. n/2; 
for (int k = -n2j k <= n2j ++k) 

for ( int j = -m2; j <= m2; ++j) 
fft.setMagnitude (u+j, v+k. O. Of ) ; 

catch (FFTException e) { 
II do nothing if not in frequency domain 

} 

Deconvolution 

Real images suffer from a variety of defects. For example, imaging devices generally add 
a certain amount of random noise to an image . Sometimes, as in the case of impulse noise, 
this can have a pronounced effect on the appearance of the image. We have already looked 
at several techniques for the suppression or removal of random noise from images. 

But noise is not the only type of defect found in images. Other forms of degradation 
are possible. Some sources of degradation are essentially environmental; examples are 
the blurring that can occur when a moving object is imaged, or the distortion induced by 
atmospheric turbulence in astronomical images obtained from ground-based telescopes. 
Other defects are introduced by the imaging device; misfocusing of a camera lens, for 
instance, can blur an image significantly. 

In many cases, the degraded image can be modelled as a perfect image that has been 
blurred by filtering and then fiuther corrupted by the addition of noise. Thus, we may write 

j(x. y) = f(x, y) * hex, y) + E(X , y), (8.26) 

where f is the observed image, f is the undegraded image, It is a convolution kernel that 
models the blurring and € is the noise term. This expression is quite general , allowing both 
hand E to vary spatially. We can simplify matters by assuming that degradation is spatially 
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invariant. If we can further assume that the noise is negligible, then we have 

j(x, y ) = lex , y) * h. (8.27) 

which is a simple convolution. Clearly, it would be advantageous to reverse the effect of 
this convolution via some deconvolution technique-but it is not obvious how this might 
be achieved. 

8.6.1 Point spread functions 

8.6.2 

The convolution kernel h in Equation 8.27, which models the net effect of blurring from 
all sources in the scene and imaging system, is known as the point spread function (PSF). 
The term is an apt one, for the PSF describes how energy from a point source is 'smeared 
out' by the imaging process. If the system were perfect, a point source would produce an 
image consisting of a single bright pixel, surrounded by zero-valued pixels; instead, what 
we see is an area of non-zero pixels. A profile of grey level across this area will have the 
same shape as the PSF. 

Ifwe are to deconvolve an image, we must know the form of its PSF. This can sometimes be 
determined from theoretical considerations, or by careful examination of the circumstances 
of image acquisition. Suppose, for example, that an object in an image is blurred as a result 
of uniform motion along the x axis. If we know its speed and the exposure time for the 
image, we can calculate the distance that it travelled in the scene during imaging. Ifwe also 
know the distance in the image represented by a single pixel, we can determine the width 
in pixels of the PSF, and hence create an appropriate kernel. 

If the PSF cannot be derived, it must be estimated from measurements of the image. It 
helps in this case if we can see points or lines whose properties are known-e.g" a star of 
known size in an astronomical image, or the (presumably sharp) edge of a building in an 
image of an outdoor scene. 

The inverse filter 

It becomes clear how Equation 8.27 might be inverted if we move to the frequency domain. 
Applying the convolution theorem, the expression becomes 

F(lI, v) = F (II , v) H (II. v). 

F is the spectrum of the observed image and F is the spectrum of the unobserved, unde­
graded image. H, the Fourier transfonn of the PSF, is known as the modulation transfer 
function (MTF). Rearranging the previous expression. we get 

F(II , v) , [I] 
F(lI, v) = =F(lI. v) . 

H(u, v) H(lI , v) 
(8.28) 

The term 1/ H (rt, v) is an inverse filter that will remove the degradation. 
In practice, there are numerous problems with inverse filtering. These become apparent if 

we consider the example of motion blur. The PSF for unifonn linear motion is a rectangular 
pulse with a width correspdonding to the distance travelled during the time it took to acqui re 
the image. Its MTF, plotted in Figure 8.32, contains zeros, so division by zero may occur 
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Figure 8.32 MTF for uniform linear motion. 

at some point in frequency space. If the assumption of no noise is correct, the spectrum of 
the degraded image will have corresponding zeros, giving an indeterminate ratio of 0/0 in 
Equation 8.28. But what if noise is present? In this case, the zeros will not coincide, and 
the image restored by the inverse filter will be obscured by the contribution of the noise 
term. We can see this if we assume a degradation model of the form 

j(x, y) = f(x. v) * h + c(x , y). 

with E(X, y) modelling the noise. In the frequency domain, this becomes 

Feu. v) = F(u. v)H(u. v) + E(u, v). 

Applying the inverse filter to both sides, we get 

Fell, v) E(lI. v) 
-::-;--: = F(u. v) + . 
H(lI, v) . H(lI, v) 

Looking at the right-hand side of this expression, we can see that, as H (u, v) nears zero, the 
second term becomes large and dominates F (u , v) (which is what we are trying to recover) . 

One empirical solution to these problems is to set a threshold on H(u., v), below which 
the corresponding value of F(lI, v) is set to zero. Another idea is to limit inverse filtering 
to a certain distance from the origin of the spectrum-the 'restoration cutoff frequency'. 
Figure 8.33 shows this approach applied to the deconvolution of a blurred image to which 
a small amount of noise has been added. A cutoff frequency of 20 has been used, which 
excludes over 90% of the area of the spectrum from the analysis. This limits the amount 
of blurring that can be removed, and the sharp cutoff causes ringing in the output image. 
Nevertheless, the output image is clearly an improvement over the input. 
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(a) (b) 

(e) (d) 

Figure 8.33 Deconvolution of a blurred. nOisy image. (a) Input image. (b) Spectrum of 
input image. (c) Deconvolved spectrum, with a cutoff frequency of 20. (d) Deconvolved 
image. 

The Wiener filter 

A more rigorous solution to the problem of noise affecting deconvolution is the Wiener 
filter. A simplified version of this filter is applied as follows: 

[ 
J IH (u, vll2 ] . 

F(u, v) = F (u, v), 
H(II, v) IH (I/, vJ12 + K 

(8.29) 

where K is a constant value proportional to the variance of the noise present in the image. 
If K = 0, th is expression reduces to a simple inverse filter. If K is large compared with 
H(ll , v), then the second term inside the brackets will be small, thereby balancing out tile 
large value of the first term. 
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8.7 Further reading 

Various image processing texts [5, 11 , 36, 48] give accessible introductions to Fourier 
transforms and the frequency domain. Gonzalez and Woods [20] and Castleman [9] give 
the subject a fairly thorough treatment. A comprehensive survey of Fourier techniques and 
their applications is given by Bracewell [7]. 

The original source of the FFT algoritlun is a classic paper by Cooley and Tukey [10]. 
Crane [II] gives an implementation in C. Pitas [37] describes this and other types ofFFT 
algorithm and gives implementations, again in C. Porting these examples to Java should be 
a straightforward matter. 

Deconvolution techniques are described by Parker [36] and by Umbaugh [48]. For even 
more detail, consult the classic text by Andrews and Hunt [2]. Note that other filters exist 
besides the simple inverse filter and Wiener filter discussed here; examples include the 
constrained least squares filter, the power spectrum equalisation filter and the geometric 
mean filter. Umbaugh [48] gives some practical examples of these filters at work. It has 
been shown [2] that, under conditions of limited blurring and moderate noise, the inverse 
filter produces the least desirable results, and that the Wiener filter produces images that 
are more blurred than we would like. The geometric mean fi lter seems to produce results 
that are more pleasing visually. 

The discrete Fourier transform is just one of a number of discrete linear transformations 
that are useful in image processing. For example, there is the discrete cosine transform, 
used in image compression (see Chapter 12). Other transforms have basis functions that are 
rectangular, rather than sinsusoidal, waves; examples are the Hadamard, Walsh and Haar 
transforms. Discrete image transforms are reviewed by Castleman [9] and by Gonzalez and 
Woods [20]; a less mathematical treatment is given by Umbaugh [48]. 

8.8 Exercises 

I. Follow up the references given above on other discrete image transforms. Compile a li st 
of their strengths and weaknesses and compare with those of the Fourier transfonn. 

2. Investigate alternative algorithms for FFTs and modify the ImageFFT class to accom­
modate them. 

3. Implement a version of ImageFFT that uses a native method to compute the Fourier 
transform, and benchmark it against the pure Java version described in this chapter. 

4. A video camera has been operated near some unshielded electrical machinery and, as a 
result, each frame of the video signal is corrupted by a superimposed sinusoidal noise 
pattern. Images digitised from the video signal have dimensions 640 x 480. A student 
is asked to outline the steps involved in computing the spectrum of one of these images, 
displaying it and then modifying it to remove the noise pattern. The student makes the 
following observations: 

(a) "You take the image and just do a Fourier transform on it. This gives you the 
spectrum- which is just an array of numbers that tells you how much of each fre­
quency is present in the image." 
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(b) "Ifthe image has dimensions N x N, then the spectrum also has dimensions N x N­
but half of the numbers are duplicated, and you can throw these away." 

(c) "When you display the spectrum as an image, it will be too dark; you can make more 
detail visible by taking the logarithm of each amplitude in the spectrum, and scaling 
this to lie in the range 0- 255." 

(d) "There will be a bright spot visible in the spectrum, at a position corresponding to 
the frequency of the noise pattern. [fyou set amplitudes to zero at this point and do 
an inverse Fourier transform, the resulting image will have lost the noise pattern," 

Comment on each of these statements, correcting any errors and omissions that you find. 

5. Implement an in~eractive tool that 

(a) Displays an image and its spectrum 
(b) Allows the spectrum to be edited by blanking out regions selected with the mouse 
(c) Displays the inverse Fourier transform of the spectrum, allowing the user to see the 

effects of their editing 

6. Many photo editing software packages provide a facility to simulate motion blur. Use 
this to simulate a known amount of motion blur in an image or, if you have no access 
to such a package, write a Java application to do the same. Create another version of 
the blurred image, to which a small amount of noise has been added. (You can use the 
GaussianNoise application on the CD for this.) Then implement the inverse filter and 
the Wiener filter in Java and experiment with deconvolution of the images using these 
filters. 
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Geometric operations change image geometry by moving pixels around in a carefidly 
constrained way. We might do this to remove distortions inherent in the imaging 
process, or to introduce a deliberate distortion that matches one image with another. 
There are three elements common to most geometric operations: transformation 
equations that move a pixel to a new location, a procedure for applying these equa­
tions to an irnage, and some way of computing a value for the transformed pixel. 
In this chapter, we will look at each of these elements in turn. We will consider 
simple operations such as rotation or scalingjirst, before moving on to more complex 
operations such as warping and morphing. 

9.1 Introduction 

Every image has its own set of geometric properties. This geometry is visible in the form of 
spatial relationships that exist between the groups of pixels representing particular features 
of interest in the image. Two images of the same scene, containing the same features, can 
have different geometries-if, for example, the distance between a pair of features is greater 
in one image than in the other, or if a particular group of features lie on a straight line in 
one image but not in the other. 

It is sometimes necessary to transform image geometry, moving pixels around to change 
the relationships between image features. We may wish to do this for images that suffer 
from some form of geometric distortion. In modern cameras having standard lenses and 
CCD sensors, distortion is usually very small, and correction of any distortion is necessary 

228 



Simple techniques and their limitations 229 

only if we wish to make precise measurements of the sizes and shapes of features in an 
image. However, cases arise where we must use special optics (such as a fisheye lens) or 
an unusual type of sensor (of the log-polar type discussed in Chapter 3, for example); in 
these cases, geometric correction may be essential. Geometric processing is also essential 
in situations where there are distortions inherent in the imaging process-such as remote 
sensing from aircraft or spacecraft. 

Consider, for example, the line scanner instruments flown aboard aircraft for remote 
sensing purposes. A line scanner's sensor is a one-dimensional array of photosites. A two­
dimensional image is built up by the motion of the aircraft, which sweeps the sensor across 
an area of the ground below- hence the term 'pushbroom imaging', which is sometimes 
used to describe the mode of image acquisition for these devices. \Vhile a sweep is taking 
place, the aircraft may be experiencing changes in altitude, attitude or velocity-each of 
which can cause a particular type of distortion in the image. An increase in altitude, for 
instance , means that the first row of pixels spans a smaller distance on the growld than the 
last row of pixels. 

In images that have not suffered geometric distortion, we may nonetheless wish to modify 
geometry in some way. To use the example of remote sensing once again, cartographers 
frequently need to distort images of terrestrial or planetary surfaces deliberately, so that 
they conform to a particular map projection [9]. We might also need to register two or more 
images of the same scene, obtained from slightly different viewpoints or acquired with 
different instruments. Image registration matches up the features that are common to two 
or more images. A typical application is change detection, where we quantify the changes 
in a scene by subtracting an image obtained at one time from an image obtained at a later 
time. Registration also finds applications in medical imaging, where it can help doctors to 
improve their diagnoses by allowing them to combine data obtained using different imaging 
techniques (e.g., x-ray CT and nuclear magnetic resonance imaging). 

9.2 Simple techniques and their limitations 

In Chapter 5, we encountered some very basic techniques for manipulating image geometry. 
We saw that an image can be enlarged by an integer factor, n, simply by copying each pixel 
to an n x n block of pixels in the output image. This technique is fast , and has been a 
standard feature of specialised image processing hardware. An obvious disadvantage is 
that it cannot be used to expand an image by some arbitrary, non-integer factor. Another 
problem is that greatly enlarged images bave a very 'blocky' appearance. This may not 
bother us in applications where we merely wish to examine pixels more closely, but is of 
serious concern otherwise. 

There are similar problems with the technique of shrinking an image by subsampling 
its array of pixels. First, the technique cannot be used to reduce image dimensions by an 
arbitrary factor. Second, subsampling can eliminate information from the image completely, 
as Figure 9.1 illustrates. One solution to this latter problem is to turn an n x 11 block of pixels 
in the input image into a single pixel in the output image. The value of each output pixel 
must be representative of the corresponding block in the input image. The mean grey level 
of the block can be used (Figure 9.2). Crane [11] also suggests the median, but Figure 9.2 
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(a) (b) (c) 

Figure 9.1 Problems with shrinking a simple image by subsampling. (a) Input image. 
(b) Image generated by sampling every fifth pixel. magnified for easier viewing. (c) Image 
generated by sampling every sixth pixel. 

(a) (b) 

Figure 9.2 Shrinking the image of Figure 9.1 (a) by using the mean or median of an n x n 
block. (a) Mean. (b) Median. 

shows that this can suffer from the same problem as subsampling. given the right type of 
lffiage. 

Figure 9.3 compares subsampling with the n x II mean and Il x n median approaches for 
a real image of a face. In this case. there is little to choose between the mean and median 
images. The subsampled image is clearly inferior, with data loss leading to an apparent 
change in facial expression. 

9.3 Affine transformations 

An arbitrary geometric transformation will move a pixel at coordinates ex , y) to a new 
position, (x', y'), given by a pair of transformation equations, 

x' = T.,(x , y), 

y' = Ty(x, y) . 

(9.1) 

(9.2) 

T., and Ty are typically expressed as polynomials in x and y. In their simplest form, they 
are linear in x and y, giving us an affine transformation, 

x' = aox + aJ Y + a2, 

y'= box+bly+ b2. 

(9.3) 

(9.4) 



Affine transformations 23 I 

Figure 9.3 Shrinking a real image by a factor n. (a) Original image. (b) Subsampling. 
(c) Mean of n x n block. (d) Median of n x n block. 

This can be expressed in matrix fann as 

(9.5) 

Note the use of homogeneolls coordinates; the tvvc-dimensional points (x, y) and (x', y') 
are represented using three-dimensional vectors, with the third dimension equal to 1. This 
is a convenient trick that allows us to represent the entire transformation as a single 3 x 3 
matrix. We could represent points as 20 vectors, but then our transfonnation would consist 
of multiplication by a 2 x 2 matrix followed by addition of a vector, i.e. , 

[X'] [ao al] [X] [a,] 
y' = bo bl Y + b, . 

This is less compact and more difficult to manipulate than the homogeneous representation. 
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9.3.1 

Under an affine transformation, straight lines are preserved and parallel lines remain 
parallel. Translation, scaling, rotation and shearing are all special cases of Equations 9. 3 
and 9.4. For example, a translation of 3 pixels down and 5 pixels to the right is 

X' = x + 5, 

y' = y+ 3. 

The corresponding affine transformation matrix is 

Table 9.1 specifies how the elements ofthe transformation matrix are computed for selected 
special cases of affine transfonnation. 

Table 9.1 Transformation coefficients for some simple affine transformations. 

Transformation aD a1 02 bo b1 b, 
Translation by 6x , 6 y 0 "'X 0 I ily 
Scaling by a factor s .s 0 0 0 0 
Clockwise rotation through angle () cos O - sin O 0 sin{) cos e 0 
Horizontal shear by a factor s s 0 0 0 

Note that any combination of the transformations listed in Table 9.1 is also an affine 
transfonnation. Thus, it is usual to express an arbitrary affine transformation as some 
combination of these simpler transfonnations, performed in sequence. This is generally 
more meaningful than specifying values for the elements of the transformation matrix in 
Equation 9.5. Alternatively, we can specity an affine transformation in terms ofthe effect it 
has on points in the xy plane. Given the coordinates of three points before transformation, 
and the corresponding coordinates of those points after transformation, we can write down 
six simultaneous equations in x and y . These can be solved to find the six transformation 
coefficients. The three points in each image can be regarded as the vertices of a triangle; the 
affine transformation can therefore be viewed as the mapping of one triangle onto another 
(Figure 9.4). 

Affine transformations in Java 

The lava2D API supports affine transformations of images and other graphic 
objects. A transformation is specified by an instance of the class java.awt.geom. 
AffineTransform. An AffineTransform can be created in various ways, using the 
constructors listed in Table 9.2. For example, 

AffineTransform transform = new AffineTransform()j 

creates an identity transformation, i.e. , a transformation that will leave an image unchanged. 
This can be changed subsequently by calling various methods of Aft ineTransform. Trans­
formation objects can also be created from a set of coefficients, supplied in an array or as 
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output image 

Figure 9.4 Mapping of one triangle onto another by an affine transformation. 

Table 9.2 Constructors provided by Java's AffineTransform class . 

AffineTrans£orm() 

AffineTrans£orm(AffineTransform t) 

AffineTransform(double[] coefi) 

AffineTrans£orm(float[) coeff ) 

AffineTransform{double aO, double bO, double al, double bi, double a2, 
double b2) 

AffineTransform(float aD, float bO, float a1, float bi, float a2, float b2) 

separate parameters. Data types of float and double are supported. When an array with 
at least six elements is provided, it is assumed that the first six elements are the coefficients 
ao . bOt al. hi. Q2, b2. If the array has four or five elements, the first four are assumed to be 
the coefficients (fO. bu, (ll, hI. 

For simple transformations, it is more convenient to use the factory methods listed in 
Table 9.3. For example, a transformation object that will increase image size by 50% can 
be created with 

AffineTransform scale = AffineTransform,getScalelnstance(1.5, 1.5); 

Similarly, a transfonnation that will rotate an image 45 0 about its centre can be created thus: 

double angle = Math.PI/4.0; 
double x = image.getWidth()/2.0; 
double y = image.getHeight()/2.0; 
AffineTransform rotate = 

AffineTransform,getRotatelnstance(angle, x, y); 

Note that AffineTransform expects angles to be expressed in radians. Note also that the 
getScalelnstance 0 and getShearlnstance 0 permit us to specify different degrees 
of scaling or shearing in the x and y directions. 
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Table 9.3 Factory methods provided by Java's AffineTransform class. 

AffineTransform getTranslatelnstance(double tx, double ty) 

AffineTransform getScalelnstance (double SX, double s y ) 

AffineTransform getRotatelnstance(double theta) 

Aff1neTransform getRotatelnstance(double theta, double x. double y) 

AffineTransform getShearlnstance(double SX, double 5Y) 

LISTING 9.1 Java code to analyse the properties of an Aff ineTransf arm. 

public static boolean bitSet(int flags, int mask) { 
return (flags & mask) != 0; 

} 

public static void checkTransform (AffineTransform transform) { 
System .out.println(l1Trans£ormation involves:!!); 
int flags = transform.getType(); 
if (bitSet (flags , AffineTransform.TYPE_TRANSLATION» 

System.out.println("translation"); 
" if (bitSet(flags, AffineTransform.TYPE_MASK_SCALE» 
11 System.out.println(tlscaling lt

); 

" if (bitSet(flags, AffineTransform.TYPE_MASK_ROTATION» 
B System.out.println("rotation ll

); 

" if (bitSet (flags , AffineTransform.TYPE]LIP» 
!s System. out. println ("reflection") ; 
,. } 

The state of an existing AffineTransform can be probed by calling its getType 0 
method. The integer returned by this method will have various bits set to indicate the 
properties of the transfonnation. The Java code shown in Listing 9.1 illustrates how 
these bits can be checked. Note that there are, in fact, two types of scaling: UnI­
form scaling, indicated by the bit value AffineTransform. TYPE_UNIFORM_SCALE; 
and scaling by different amounts in the x and y directions, indicated by the bit value 
AffineTransform. TYPE_GENERAL_SCALE. A bit mask called AffineTransform. 
TYPE_MASK_SCALE is provided to test for either type of scaling. Similarly, there 
are two types of rotation: rotation by a mUltiple of 90' (AffineTransform. TYPE_ 
qUADRANT_ROTATION) and rotation through some arbitrary angle (AffineTransform. 
TYPE_GENERAL_ROTATION). The bit mask AffineTransform. TYPE_MASK_ROTATION 
can be used to test for either type of rotation. 

Be warned that getTypeO has a flaw. Ifwe create an AffineTransform that performs 
a 90' rotation and check the value returned by get Type 0, we find that the scaling bit is 
set, despite the fact the transformation is merely a rotation' (Presumably, getTypeO is 
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not taking account of the fact that matrix elements ClO and hi can have values other than 1 
without there being any scaling.) 

An existing AffineTransform can be modified in five different ways. It can be 

• Replaced with a simple transformation 

• Replaced with an arbitrary transformation 

• Concatenated with a simple transformation 

• Concatenated with an arbitrary transformation 

• Preconcatenated with an arbitrary transformation 

Methods that replace the existing transformation are listed in Table 9.4. The concatenation 
methods, listed in Table 9.5, update the transformation matrix with an additional trans­
formation, rather than replacing it. The following example illustrates how these methods 
work. 

AffineTransform t = new AffineTransform(); 
t.setToTranslation(lO, 20); 
t.rotate(30.0*Math.PI/180 .0); 
AffineTransform translate = 

AffineTransform.getTranslatelnstance(5. 0); 
t.concatenate(translate); 
AffineTransform scale = AffineTransform.getScalelnstance(0.3. 0.3); 
t.preConcatenate(scale); 

The first line creates t as an identity transfonnation. This is then replaced by a translation of 
10 units to the right and 20 units down. Next, a 30' rotation is added-so the transformation 
is now a translation, followed by a rotation. The fourth and fifth lines create another 
AffineTransform that performs a translation and concatenate it with t-with the result 
that t is now a translation, followed by a rotation, followed by another translation. The 
last two lines create a transformation object that scales by a factor 0.3 in both directions 
and preconcatenate it with t. At this stage, t consists of a scaling, a translation, a rotation 
and another translation. We should emphasise that this sequence of operations is merely 
a convenient way to visualise the transformation. As far as an AffineTransform is 
concerned, they are aggregated into a single transformation matrix. 

Table 9.4 Methods to replace the current transformation of an AffineTransform 
with a different transformation. 

void setToldentity() 

void setToTranslationCdouble tx, double ty ) 

void setToScale(double sx, double sx) 

void setToRotation(double angle) 

void setToRotation(double angle, double x. double y) 

void setToShearCdouble sx, double sy) 

void setTransform(AffineTransform newTransform) 
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Table 9.5 Methods to concatenate the current transformation of an 
AffineTransform with an additional transformation. 

void translate(double tx, double ty) 

void 5cale(double 5X, double 5Y) 

void rotate(double angle) 

void rotate(double angle, double x, double y) 

void shearCdouble 5X, double 5Y) 

void concatenate(AffineTransform extraTransform) 

void preConcatenateCAffineTransform firstTransform) 

AffineTransform has a small number of other methods that may prove useful: 
getMatrixO copies the elements of the current transformation matrix to the double 
array provided as a parameter; getDeterminant () returns the determinant of the cur­
rent transformation matrix; createlnverse () returns an AffineTransform object 
representing the inverse of the current transformation. 

An enhanced transformation class 

Although AffineTransform is very useful, it lacks one feature: the ability to create a 
transformation that maps one triangle onto another, as illustrated in Figure 9.4. We provide 
a class called AffineTransformation to do this, as part of the com. pearsoneduc. 
ip. util package. AffineTransformation extends AffineTransform, duplicating its 
constructors and adding one more. This new constructor takes two arrays of type Point2D 
as parameters. The first specifies the vertices of the input triangle and the second the 
corresponding vertices of the output triangle. 

9.4 Transformation algorithms 

How do we apply an affine transformation--or any kind of transformation, for that matter­
to an image? One approach, described as forward mapping, involves iterating over each 
pixel of the input image, computing new coordinates for it using Equation 9.5 and copying 
its value to the new location. Suppose, for example, that we wish to rotate an image by an 
angle e about the origin. Referring to Table 9.1, we see that this is accomplished with the 
transformation matrix 

[

cose 
sine 
o 

Now let us consider what happens to 

- sine 
cose 

o 

I. The pixel at (0. 100) after a 90° rotation 

2. The pixel at (50, 0) after a 35° rotation 
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In case 1, cos 90' is 0 and sin 90' is I, so the pixel moves to coordinates (-100,0). This 
is clearly a problem, since pixels cannot have negative coordinates. Case 2 illustrates a 
different problem. Here, we calculate that 

x ' = x cos e - y sin e = 50 cos(35') = 40.96, 

y' = x sin e + y cos e = 50 sin(35') = 28.68. 

The coordinates calculated by the transformation equations are not integers, and therefore 
do not index a pixel in the output image. 

The first problem can be solved by testing coordinates to check that they lie within the 
bounds ofthe output image before attempting to copy pixel values. A simple solution to the 
second problem is to find the nearest integers to x' and y' and use these as the coordinates of 
the transformed pixeL Algorithm 9.1 incorporates both of these solutions into a procedure 
for rotating an M x N image by forward mapping. An implementation of this algorithm 
is shown in Listing 9.2. This code can be found in the application ForwardRotation, 
available on the CD. 

The forward mapping approach is clearly wasteful, as it potentially calculates many 
coordinates that do not lie within the bounds of the output image. Furthermore, each 
output pixel may be addressed several times----or, worse still, not at alL We can see this 
in Figure 9.5, which shows an image and the results of a 25' rotation anticlockwise about 
the origin, produced using the ForwardRotation program. The rotated image contains 
numerous 'holes' where no value was computed for a pixel. 

To guarantee that a value is generated for every pixel in the output image, we must consider 
each output pixel in turn and use the inverse transformation to detennine the position in 
the input image from which a value must be sampled. This is known as the backward 

ALGORITHM 9.1 Image rotation by forward mapping. 

Create an output image, g, of dimensions M x N 
for all pixel coordinates x , y in g do 

g(x , y) = 0 
end for 
ao=cose 
bo = sine 
0 1 = - bo 
hi = 00 

for all pixel coordinates x, y in input image f do 
x' = round(aox + QlY) 
y' = round(box + blY) 
if (x' , y') is inside g then 

g(x',y') = f(x,y) 
end if 

end for 
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LISTING 9.2 Java implementation of Algorithm 9.1. 

public static Bufferedlmage rotate(Bufferedlmage input, double angle) { 

int width ~ input.getWidth(); 
int height = i nput.getHe i ght()j 
Bufferedlmage output'" new Bufferedlmage(width, height, input .getType (» ; 

" 

double aD 
double bO 
double al 

11 int rx, ry ; 

Math cos(angle*Math.PI/180.0)j 
Math sinCangle*Math.P I /180.0); 
- bO, bl = aO ; 

12 f or ( int y '" 0 ; y < height; ++y) 
13 for (int x OJ x < yidth; ++x ) { 
14 rx '" ( int ) Math,round(aO*x + al*y) ; 
IS ry '" (int) Math ,round(bO*x + b1*y); 
16 if (rx >= 0 &I.t rx < width &8t ry >= 0 8t.& ry < height) 
11 output. setRGB(rx , r y, input.getRGB (x, y»; 

" } 

" 
20 return output; 

22 } 

(a) (b) 

Figure 9.5 Rotation by forward mapping. (a) In put image. (b) Output image, showing 
holes where there was no mapping of an input pixel to an output pixel. 

mapping approach. Algorithm 9.2 shows the procedure for rotation by an angle 8 using 
backward mapping. Notice that we must still contend with the two problems mentioned 
earlier, namely that the calculated coordinates are real numbers, and that they might lie 
outside the bounds of the image (in this case, the input image). 



ALGORITHM 9.2 Image rotat ion by backward mapping. 

Create an output image, g, of dimensions M x N 
Qo=cosB 
al =sinB 
bo = -elI 
b l = ao 
for all pixel coordinates X l , y' in g do 

x = round(aox' + au/ ) 
y = round(box' + bl y') 
if (x, y ) is inside f then 

g(x' , y' ) = f(x, y ) 
else 

g(x', y' ) = 0 
end if 

end for 

9.S Interpolation schemes 

9.5.1 Zero-order interpolation 
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The rounding of calculated coordinates (x ', y') to their nearest integers is a strategy known 
as zero-order (or nearest-neighbour) interpolation. This is illustrated in Figure 9.6. Zero­
order interpolation is simple computationally, but can degrade the appearance of the trans­
formed image. Images may look very 'blocky' when scaled up in size by a large factor, 
and horizontal or vertical lines may have a very jagged appearance when rotated through 
angles that are not multiples of 90" - as in Figure 9 .8(b). 

x backward x' 
mappmg 

/ 
V ~ 

y --- ---- ------- N/ I~ y' 

I 

j(x, y) g(x', y') 
x, y real x' , y' integer 

Figure 9 .6 Zero-order (nearest·neighbour) interpolation. 
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9.5.2 First-order interpolation 

First-order (or bilinear) interpolation computes output pixel grey level as a distance­
weighted function of the grey levels ofthe four pixels surrounding the calculated point in the 
input image. This is illustrated in Figure 9.7. For a calculated point (x', y') surrounded by 
pixels with coordinates (xo, Yo), (XI, Yo), (xG, YI) and (XI, YI), the first-order interpolation 
function can be written 

f(x', y') = f(xo , Yo) + (f(XI, Yo) - f(xo, yo)] L'.x 

+ (f(xo, yil- f(xo , yo)]L'.y 

+ [fCxI, yil + f(xo, Yo) - f(xo, YI) - f(XI, yo)]L'.xL'.y, 

(9.6) 

where ~x = x' - Xo and 6.y = y' - YO. This formula requires ten additions or subtractions 
(including those needed to compute L'.x and L'.y) and four multiplications. A slightly 
more efficient approach breaks the computation down into three interpolation steps, as 
in Algorithm 9.3. This requires eight additions or subtractions and three multiplications. 
The saving in computation, though small, may become significant when transfonning large 
images, since interpolation must be performed every time that there is a mapping to an 
output pixel from a point inside the input image. 

y ---_ .. . 

x 

. _----- )*E: ../ 

j(x,y) 
x,y real 

backward 
mappmg 

V ~ 
y' 

x' 

I~ 

g(x',y') 
x', y' integer 

Figure 9.7 First-order (bilinear) interpolation. 

ALGORITHM 9.3 First-order interpolation of pixel grey level . 

.6..x = x' - xo 
Lly = y' - YO 
P = f(xo, YO) + [f(xi. YO) - f(xo. yo)]L'.x 
q = f(xo, YI) + (f(XI, YI) - f(xo, YI)] L'.x 
f(x ' . y') = p + (q - p)L'.y 
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Although first-order interpolation is more demanding, computationally, than zero-order 
interpolation, it produces results that are smoother and more pleasing than zero-order in­
terpolation. This can be seen clearly in Figure 9 .8( c). 

Figure 9.8 Interpolation of pixel grey level. (a) Input image. (b) Rotation with zero­
order interpolation. (c) Rotation with first-order interpolation. 

Highe .... order interpolations 

Higher-order interpolation schemes are sometimes used. A third-order, or bicubic, interpo­
lation uses a 16 x 16 neighbourhood of pixels surrounding the calculated point to compute 
its value. The calculation can be viewed as the convolution of a 16 x 16 neighbourhood 
with a cubic function, so this method of interpolation is sometimes described as cubic con­
volution. In fact, any interpolation scheme can be viewed as the convolution of image data 
with an interpolation function. 

Figure 9.9 plots one-dimensional functions representing nearest-neighbour, linear and 
cubic interpolation. The discontinuity in the nearest-neighbour function models the jump 
that occurs from one pixel to a neighbouring pixel when a calculated coordinate x' is 
no longer closest to that first pixel. This sudden jump is the cause of the blockiness or 
jaggedness visible in images that are transformed in this manner. The other two interpolation 
functions have widths greater than one pixel, so convolution with these functions computes 
a weighted average of grey level over a neighbourhood, rather than selecting the grey level 



242 Geometric operations 

0.8 

0.6 

.::' 0.4 

0.2 
/ 

0 

-0.2 

-2 -1.5 -1 

! 

"/ 
/[ 

! 

I 

-0.5 0 

x 
0.5 

nearest 
linear 
cubic 

\. 

1.5 2 

Figure 9.9 Nearest-neighbour, linear and cubic interpolation functions. 

of one particular neighbour. Both functions act as low pass filters . One difference between 
the cubic and linear functions is that the cubic function has a continuous derivative, whereas 
the linear function exhibits sudden changes in slope. Also, the cubic function has negative 
lobes. Thus. a value interpolated using this function will be a weighted sum of nearby pixel 
values. minus some contribution from pixels slightly further away. This reduces the low 
pass filtering effect. so bicubic interpolation will produce results a little sharper than those 
from bilinear interpolation. 

Higher-order interpolation is very costly, so it is generally used only if the smoothing from 
first-order interpolation is excessive or the slope discontinuities of first-order interpolation 
have an undesirable effect on the image. 

9.6 Affine image transformation in Java 

The lava2D API provides a BufteredImageOp class called AftineTransformOp to per­
fann affine transfonnations on images. Before creating an AffineTransformOp, we must 
first specify the transformation by creating an appropriate AffineTransform (see Sec­
tion 9.3.1). An Aft ineTransf ormOp is constructed from this transformation object and an 
integer specifying the type of interpolation to be used. This should have one of the values 

AffineTransformOp.TYPE_NEAREST_NEIGHBOR 
AffineTransformOp.TYPE_BILINEAR 

signifYing zero-order or first-order interpolation, respectively. For example, suppose that 
we wish to rotate a BufferedImage called input Image 30° antic10ckwise using first-order 
interpolation. This is accomplished with 
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AffineTransform rotation = 

AffineTransform.getRotatelnstance(-Math.PI/6); 
BufferedImageOp rotateOp = 

new AffineTransformOp( rotat ion, AffineTransformOp.TYPE_BILINEAR); 
Bufferedlmage rotatedlmage = rotateOp.filter(inputlmage, null); 

The program Rotatel on the CD uses similar code to rotate an image about its centre 
coordinates or about a specified point. Figure 9.1 O(b) shows typical output generated when 
the program rotates an image about the origin. Notice that some ofthe image has been lost 
because the rotation has moved pixels outside the allowed coordinate space of 0 :( x :( M-l 
and 0 ,;; y ,;; N - I, M and N being image width and height, respectively. The solution to 
this problem is to en large the coordinate space and translate the image, either before or after 
rotation. To determine coordinate space dimensions and the translation parameters, we can 
apply the transformation to the corners of the image and compute a bounding box for these 
four points. The width and height of this bounding box are the required dimensions of the 
output image. The upper-left corner of the box must be translated to (0,0) in order for all 
of the rotated pixels to lie within the output image. 

(a) (b) (c) 

Figure 9.10 Two ways of rotating an image. (a) Input image. (b) Image transformed by 
Rotatel, without special measures to deal with pixels outside the coordinate space. (c) 
Image transformed by Rotate2 in such a way that all rotated pixels are visible. 

Listing 9.3 shows a Java method getBoundingBoxO that computes the bounding box 
of an image under a given affine transformation. This method is part of the GeomTools 
class in package com, pearsoneduc. ip. util. The program Rotate2 provided on the 
CD uses getBoundingBox () to find the bounds of an image following a specified rotation. 
It then modifies the transformation, creates storage for the output image and performs the 
rotation in the following manner: 

AffineTransform rotation 
AffineTransf orm.getRotatelnstance(angle); 

Rectangle2D box = GeomTools .getBoundingBox(image, rotation); 
AffineTransform translation = 
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LISTIN G 9.3 A method to calculate the bounding box of a transformed image. 

public static Rectangle2D getBoundingBox( 
Bufferedlmage image, AffineTransform transformation) { 

II Apply transformation to image corners 

int xmax ~ image.getWidth() - l; 
int ymax ~ image.getHeight()-l; 
Point2D[] corners = new Point2D.Double(4); 
corners (0] new POint2D .Double(0, 0); 

" corner s (1] new Point2D.Double (xmax, 0); 
II corners [2] new Point2D. Double (xmax, ymax); 
12 corners [3] new Point2D.Double(O, ymax); 
13 transformation. transform(corners, 0, corners, 0, 4); 

" 
15 II Calculate bounding box of transformed corner points 

" 
17 Rectangle2D boundingBox = new Rectangle2D.Double ( ); 
18 for (int i = 0; i < 4; ++i) 
" boundingBox.add(corners(i]); 
20 

21 return boundi ngBox; 

" " } 

AffineTransform.getTranslateInstance(-box.getMinX(), 
- box.getMinY()); 

rotation,preConcatenate(translation); 

int width = (int) Math.round(box .getWidth()); 
i nt height = (int) Math.round(box.getHeight()); 
BufferedImage rotatedImage 

new Buff eredImage(width, height, image.getType()); 
BufferedImageOp rotateOp ~ 

new AffineTransformOp(rot ation, interpolation); 
rotateOp.filter(image, rotatedImage); 

Figure 9.10(c) shows output from the Rotate2 program. We can see that the image has 
become larger in order to accommodate all of the rotated pixels. 

Two further programs that perform affine transformations are provided on the CD. Scale 
enlarges or shrinks an image uniformly by an arbitrary factor, or non-uniformly using 
different factors for the x and y directions. As with Rotatel and Rotate2, zero-order and 
first-order interpolation schemes are supported. 
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Also available is AffineTransformTool. This has a graphical user interface, showing 
an image before and after affine transformation. A control panel provides sliders to scale 
the image in the x and y directions by factors in the range [0.1 , 2.0]. Another slider can 
be used to rotate the image through the range [-90°,90°]. Radiobuttons allow the user 
to toggle between zero-order and first-order interpolation. Figure 9.11 is a screen dump 
showing AffineTransformTool in action. 

~AffmeTransformTDol palthenon Ipg I!Ii[ilEi 

===:::::lQ== 
horizontal scale (xl0) 

5 10 15 20 

=~v:J:==== 
vertical scale (xiO) 

5 10 15 20 

===I;vJ== 
rotation 

.90 -60 -30 0 30 60 90 

o zero-order @ first-order 

Figure 9.11 The AffineTransformTool application. 

9.7 Warping and morphing 

We noted in Section 9.3 that the transformation equations mapping (x, y) to (x', y') can be 
expressed as polynomials in x and y . For example, we can write 

, , 2 
x = aox- + QIY + a2XY + Q3X + Q4Y + as, 

y' = box2 + bli + b2XY + b3X + b4Y + bs. 

(9.7) 

(9.8) 
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The twelve coefficients in these equations specify a quadratic warp. This can introduce 
more complex distortions into an image than an affine transformation-warping straight 
lines into curves, for example. Cubic warps, with twenty warp coefficients, are also used­
e.g., to remove the pincushion and barrel distortions caused by camera lenses. increasing 
the order of the warp increases both the complexity of the distortions introduced into the 
image and the time required to compute the transformation. 

The only practical way of specifying polynomial warps of second order or higher is by 
means of the effect they have on a set of control pOints. Consider the quadratic warp, 
for example. Here, there are twelve coefficients to be determined. We can specify the 
coordinates and displacements of six control points and substitute this information into 
Equations 9.7 and 9.8. This gives a set of twelve simultaneous equations that can be 
solved exactly for the twelve coefficients using standard numerical techniques. A cubic 
warp can likewise be determined from the coordinates and displacements of ten control 
points. 

These operations are useful in image registration, where we wish to warp one image so 
that it matches another image as closely as possible. Registration typically involves marking 
the locations of key features in the image to be warped (e.g., the corners of objects), along 
with the corresponding locations of these features in the reference image. More points than 
the minimum required for determination of the warp are usually specified, to minimise the 
effect of placement errors. This means that it is not possible to solve exactly for the warp 
coefficients; instead, a least-squares technique is used to compute the coefficients of a warp 
that best fits the specified displacements. 

[n many cases, polynomial warping is too smooth and simple to model the complex 
distortions that we wish to introduce into an image. An alternative technique is 'piecewise 
warping', in which we apply a simple transformation locally but allow that transformation 
to vary across the image. An advantage of this approach is that we can leave some areas of 
the image unchanged whilst warping others to a significant degree. 

In a piecewise warping operation, the user of the warping software will typically define 
a control grid on the image to be warped. This grid is drawn as a mesh of horizontal and 
vertical1ines lying on top of the image. The intersections ofthe grid lines represent control 
points that can be dragged to new locations using the mouse. Figure 9.12 shows an example 
of a control grid drawn on an image, before and after modification by the user. 

When calculating the warp, we imagine that the control grid marks out a set of quadrilat­
erals covering the entire image. The intersections of the grid lines are the corners of these 
quadrilaterals. For every quadrilateral in the original, unwarped grid, there is a correspond­
ing quadrilateral in the warped grid. A bilinear transformation can be specified that will 
map the former onto the latter: 

X' = aOx y + a,x + a2Y + (l 3, 

y' = box y +b1y + b y +hJ. 

(9.9) 

(9.10) 

This is rather like the affine transfonnation, but with an extra term in xy. There are 
eight coefficients to be determined, but the four corner points are sufficient to solve for 
them exactly. We can also write down similar equations for the inverse transformation, 
expressing.r and y each as bilinear functions of x' and y' , and determine their coefficients 
in the same manner. 
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Ca) Cb) 

Figure 9.12 Piecewise warping with a control grid. (a) Original, regular control grid 
drawn over an image. (b) Irregular grid indicating the desired warp. 

ALGORITHM 9.4 A simple piecewise warping technique. 

for all rectangles of the unwarped grid do 
Find corresponding quadrilateral of warped grid 
Solve for coefficients {ai, bi : i = 0, 3} of the inverse transformation 
Store rectangle 's corners and its transformation coefficients in a list 

end for 
Create an output image, g, with same dimensions as f 
for all pixel coordinates x' , y' in g do 

Search list to find the rectangle containing (x ', y' ) 
Use its coefficients to compute x and y 
Determine value of fCx, y) by interpolation 
g(x', y' ) = f(x,y) 

end for 

Algorithm 9.4 sketches the steps involved in piecewise warping of an image. It assumes 
that the input image exists, and that the coordinates of control points from the original control 
grid and the warped control grid have already been determined. Figure 9.13 shows the 
results of piecewise warping using the grids of Figure 9.12. The image in Figure 9.13(a) was 
generated by warping from the regular grid to the irregular grid; the image of Figure 9.13(b) 
was produced by a warp in the opposite direction. 

Morphing is a technique for transforming one image into another in an incremental 
fashion. It has found favour as a special effect in the TV and film industries, although 
it has few-if any- serious applications. Morphing incorporates the ideas of piecewise 
warping and registration. It requires an initial image and a final image, onto which the 
initial image will be warped. In most morphing algorithms, the user must define matched 
pairs of control points on the two images to specify the warp. A mesh of some kind-
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Figure 9.13 Examples of piecewise warping. (a) Warp specified in Figure 9.12. (b) 
Reverse of the transformation in (a). 

triangular, for example-is then generated from the control points of the initial image, and 
another mesh is generated in the same way from the control points of the final image. In the 
case of triangular meshes, an affine transformation relates one triangle of the initial mesh to 
the corresponding triangle of the final mesh. The remainder of the algorithm is much like 
the piecewise warping technique discussed previously, with the important difference that 
the warp is computed incrementally, as a sequence of smaller warps. It is also necessary 
to 'dissolve' from the initial image to the final image by interpolating pixel grey level or 
colour; without this operation, morphing would merely provide an animated registration of 
the two images, rather than the smooth transition between them that is required. 

An alternative warping technique that does away with the triangular or quadrilateral mesh 
is fields-based 1/l00phing [6]. In this technique. pairs of reference lines are drawn on the 
initial and final images. Then, for each pixel, a perpendicular distance to each control line 
is calculated. Distance and relative position along the line are used to place the pixel in the 
correct position in the final image. All control lines have an influence on what happens to 
a pixel, although that influence is much lower for distant lines than it is for lines near to the 
pixel. 

9.8 Further reading 

Castleman [9] gives a good introduction to geometric operations on images. Particularly 
noteworthy is the discussion of how spacecraft images can be transformed geometrically so 
as to conform to various cartographic projections. 

Lyon [29] describes affine and bilinear transformations in some detail and presents ex­
amples in Java. 

The definite guide to image warping and morphing techniques is the book by Wal­
berg [52]. Crane [ II ] provides a good introduction to these techniques. complete with source 
code in C. Fields-based warping and morphing were introduced by Beier and Neely [6]. 
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Crane gives a useful summary of the technique, again with source code. The book by 
Gomes et aJ. [1 8] gives a broader perspective on warping and morphing, describing their 
application not only to images but also to curves, surfaces and volumetric objects. 

9.9 Exercises 

I. Consult the appropriate references [6, II] and then implement a fields-based morphing 
technique in Java. The program should have a graphical user interface, displaying the 
initial and final images side by side in a tabbed pane and allowing the user to draw 
matching pairs of lines on the two images. Selecting the other tab on the tabbed pane 
should bring up an animated display ofthe morpho There should be some way of writing 
the morph sequence out to a set of image files. 
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If lve are to analyse or interpret an ;,nage automatically. we must have a way of 
identifYing unambiguously the pi.r:els that correspond to particular features a/interest. 
The process of identifying these pixels is known as segmentation. In this chapter, 
we consider a simple segmentation technique based on the thresholding operation 
described in Chapter 6 and compare it with a more sophisticated technique that seeks 
to group similar pixels into connected regions corresponding to objects of interest. 
We also consider the different types a/information that can be used in segmentation: 
pixel grey level, pixel colour and texture in the neighbourhood 0/ a pixel, 

10.1 Introduction 

Thus far, our discussion of image processing has examined techniques that can be used to 
correct defects in images or enhance features of interest We have not yet considered the 
issues of image analysis and interpretation, Segmentation is generally the first stage in any 
attempt to analyse or interpret an image automatically. Segmentation partitions an image 
into distinct regions that are meant to correlate strongly with objects or features of interest 
in the image. Segmentation can also be regarded as a process of grouping together pixels 
that have similar attributes. For segmentation to be useful, the regions or groups of pixels 
that we generate should be meaningful. 

Segmentation bridges the gap between low-level image processing, which concerns itself 
with the manipulation of pixel grey level or colour to correct defects or enhance certain 
characteristics of the image, and high-level processing, which involves the manipulation 
and analysis of groups of pixels that represent particular features of interest Some kind of 
segmentation technique will be found in any application involving the detection, recognition 
and measurement of objects in images. Examples of such applications include 

250 
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• Industrial inspection 

• Optical character recognition (OCR) 

• Tracking of objects in a sequence of images 

• Classification of terrains visible in satellite images 

• Detection and measurement of bone, tissue, etc., in medical images 

The role of segmentation is crucial in most tasks requiring image analysis. The success or 
failure of the task is often a direct consequence of the success or failure of segmentation. 
However, a reliable and accurate segmentation of an image is, in general, very difficult to 
achieve by purely automatic means. 

Segmentation techniques can be classified as either contextual or non-contextual. Non­
contextual techniques ignore the relationships that exist between features in an image; 
pixels are simply grouped together on the basis of some global attribute, such as grey level. 
Contextual techniques, on the other hand, additionally exploit the relationships between 
image features. Thus, a contextual technique might group together pixels that have similar 
grey levels and are close to one another. 

10.2 A simple non-contextual technique: thresholding 

10.2.1 

The technique ofthresholding is used in a variety of different image processing operations, 
some of 'which we have already encountered. Thresholding transforms a dataset containing 
values that vary over some range into a new dataset containing just two values. It does 
this by applying a threshold to the input data. Input values that fall below the threshold are 
replaced by one of the output values; input values at or above the threshold are replaced by 
the other output value. 

Image thresholding is a segmentation technique because it classifies pixels into two cate­
gories: those at which some property measured from the image falls below a threshold, and 
those at which that property equals or exceeds the threshold. Because there are two possible 
output values, thresholding creates a binary image. The nature of this image depends on 
the property being thresholded. For example, we saw in Chapter 7 that thresholding was a 
part of simple edge detection algorithms. Here, the thresholded quantity is some measure 
of the strength of an edge- typically the grey level gradient at a pixel. We output a value 
of D if the gradient falls below the threshold, to indicate that this pixel is not considered to 
be a 'proper' edge; we output any nOll-zero value (commonly lor, if the output image is 
to be displayed, 255) if the gradient matches or exceeds the threshold, to indicate that this 
pixel is a proper edge. 

Thresholding of pixel grey level 

The most common form of image thresholding makes use of pixel grey level. Grey level 
thresholding applies to every pixel the rule 

{
D, 

g(x, y) = 1, 
f(x, y) < T, 

f(x, y) ;. T, 
(10.1) 
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where T is the threshold. This equation specifies 0 and I as output values, giving a true 
binary image, but it is common to use 0 and 255 so that pixels appear black or white if the 
output image is displayed. Note that thresholding can be performed in place; this means that 
we can replace g (x, y) in Equation 10.1 by f(x , y) if we wish. A variation of Equation 10.1 
is 

t
o, 

g(x, y) = I , 

0, 

f (x ,y) < TI, 

TI';; f(x ,y)';; h 
f(x,y»h 

(10.2) 

This uses two thresholds to define a range of acceptable grey levels. Equations I 0.1 and 
10.2 can be visualised as mappings of input grey level onto output grey level, as illustrated 
in Figure 10.1. 
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(a) (b) 

Figure 10.1 (a) Thresholding with a single threshold. (b) Thresholding with a pair of 
thresholds. 

Thresholding can be implemented in two ways. We can iterate over every pixel, applying 
Equations 10.1 or 10.2 to each grey level; alternatively, we can apply these equations once 
for all grey levels and store the results in a look-up table, which we use subsequently to map 
the grey level of each pixel onto 0 or I. The latter approach is marginally more efficient, 
becoming more so as we increase the number of threshold levels. 

In thresholded images, we usually regard the non-zero value as 'interesting' and a value 
of 0 as having no significance. Hence, Equations 10.1 and 10.2 assume that bright pixels 
are of interest and dark pixels are not. If the goal of segmentation is to detect features that 
are brighter than everything else in the image then this quite reasonable; if, however, we are 
aiming to detect the darker features, then Equation 10.1 should be 

{
I , 

g(x , y) = 0, 

and similarly for Equation 10.2. 

f(x , y) ,;; T, 

f(x , y) > T , 
(10.3) 
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The success or otherwise of thresholding depends critically on the selection of an ap­
propriate threshold. To understand this point fully, let us consider a hypothetical example. 
Imagine that we are involved in the development of a robot that will play the game of poker 
with a human. This robot uses a video camera to view its hand of cards. Images from the 
camera must be analysed to detennine the suits and values of the cards in a hand. Segmen­
tation is an essential part of this process. Now suppose that we decide to use thresholding 
as the segmentation technique. Figure 10.2 shows a typical image, along with the results of 
thresholding that image using three different values ofT. Clearly, only one ofthe thresholds 
gives an acceptable result. But how do we arrive at this correct threshold? 

(a) (b) 

(c) (d) 

Figure 10.2 Importance of accurate threshold selection. (a) Input image. (b) Correct 
choice of threshold (T = 90). (c) Threshold too low (T = 40). (d) Threshold too high 
(T = 215). 

An obvious solution is to rely on intervention by a human operator, who can vary the 
threshold until acceptable results are achieved. However, this is not possible in cases where 
fully automatic segmentation is required. Alternatively, we might be able to determine in 
advance a single, fixed threshold that will always give good results. In practice, this is 
feasible only in highly constrained imaging scenarios, where we have control over lighting 
conditions and the degree of contrast that exists between different image features. An 
example would be industrial inspection. 
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Another approach is to make T equal to the mean grey level of the image. The idea here 
is that the mean lies between two extremes of grey level , one representing the features of 
interest and the other everything else. Clearly, this is only going to work well for images 
containing bright objects on a simple, dark background, or vice versa. 

A more subtle technique involves choosing T so that a fixed proportion of pixels are 
detected (i.e., set to I) by the thresholding operation. This is likely to work only in cases 
where we know, in advance, the proportion of image pixels associated with the features of 
interest-which may be true in certain OCR or industrial inspection applications. 

A more general approach to threshold selection involves analysing the histogram of an 
image. This is based on the assumption, true only in certain situations, that different features 
in an image give rise to di stinct peaks in its histogram. If the assumption holds true, then 
we may distinguish between two features of differing grey level by thresholding at a point 
between the histogram peaks corresponding to those two features. Figure 10.3 shows the 
histogram oftbe image in Figure 10.2(a), annotated with the thresholds used to generate 
the inlages in Figures 10.2(b)--(d). The best of the three thresholds is the one lying between 
the peaks of the histogram. 
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Figure 10.3 Histogram of the image in Figure 10.2(a), showing thresholds that are too 
low (40), correct (90) and too high (215). 

In general, the histogram peaks corresponding to two features will overlap. The degree 
of overlap will depend on peak separation and peak width. Consider an image showing an 
object on top of a contrasting background. The separation of the peaks produced by the 
object and the background is determined by the difference in their mean grey levels. The 
overlap ofthe peaks is determined by the uniformity of object pixels and background pixels. 
A flat object with no discernable surface texture and no colour variation will give rise to a 
relatively narrow histogram peak; an object with pronounced surface relief or significant 
variations of texture or colour across its surface will produce a much broader peak that 
may overlap with the peak generated by the background. Note that we may still choose 



A simple non-contextual technique: thresholding 255 

a threshold in the valley between two overlapping peaks, but that, inevitably, some pixels 
will be detected or rejected falsely by the thresholding operation. The optimal threshold 
minimises the numbers of false detections and rejections. It does not, in general, OCCUf at 
the lowest point in the valley between two overlapping peaks (Figure 10.4). 
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Figure 10.4 Optimal threshold between two overlapping peaks of a histogram. 

Sonka et al. [45] and Parker [36] give details of an iterative method for automatic threshold 
selection, summarised in Algorithm 10.1. The method starts with an initial guess at the 
threshold and refines this estimate by successive passes through the image. The initial 
guess can be the mean grey level of the image [36] or an average of the mean grey level of 
the comer pixels and the mean grey level of all other pixels in the image [45]. The latter 
assumes that the corner pixels represent the background, rather than objects of interest. 
Four to ten iterations are usually sufficient for the algorithm to converge. 

ALGORITHM 10.1 Iterative threshold determination. 

Compute I-' I, the mean grey level of the comer pixels 
Compute /L2, the mean grey level of all other pixels 
Told = 0 
Tnew = (1-'1 + 1-'2)/2 
while Tnew -I TOld do 

I-' I ~ mean grey level of pixels for which f (x, y) < Tnew 

/L2 ~ mean grey level of pixels for which f (x , y) ;;: Tnew 

Told = Tnew 

Tnew = (1-'1 +1-'2)/2 
end while 



256 Segmentation 

10.2.2 Thresholding of colour 

Colour images contain more information than greyscale images, which can make segmen­
tation easier. But how do we carry out thresholding of a colour image? The simplest 
approach is to define independent thresholds for each component of the colour model used 
by the image. Thus, for an RGB image, we must define a red threshold, a green threshold 
and a blue threshold (or a pair of thresholds for each colour component). Colours in an 
RGB image can be visualised as points in a three-dimensional colour space. Thresholding 
can likewise be visualised as a partitioning of this space (Figure 10.5). The three (or six) 
thresholds are orthogonal planes that carve up RGB space, isolating a cuboid in which the 
colours of interest lie. Plate D shows a colour image and two examples of thresholded 
images generated from it using this technique. In the first example, three thresholds were 
chosen to isolate one corner ofRGB space in which pixels belonging to the sign reside. In 
the second example, six thresholds were used to detect sky pixels. 
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Figure 10.5 Thresholding in RGB space. 

It may be simpler, conceptually, to define a threshold on the distance of any colour from 
some reference colour in RGB space. If this reference colour is (Ro, Go, Bo), then our 
thresholding rule becomes 

g(x , y) = 

where 

{
I , 

0, 

d(x, y) :( dmax , 

d(x. y) > dmax , 

d(x, y) = J[fR(X, y) - Rol2 + [fc(x, y) - Gol2 + [IB(x, y) - Roll. 

(IDA) 

(10.5) 

In effect, this thresholding rule defines a sphere in RGB space, centred on the reference 
colour. Any pixel with a colour that lies inside or on the surface of tbe sphere will be 
set to I ; all other pixels will be set to o. Plate E shows an example of thresholding using 
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this technique. Here, the Holly wood image of Plate D(a) has been thresholded to detect 
vegetation. The reference colour was chosen to be representative of vegetation and the 
distance threshold was selected by trial and error. 

Note that we can generalise Equations 10.4 and 10.5 by specifying independent distance 
thresholds for the red, green and blue components. These define an ellipsoidal volume in 
RGB space, within which pixels are set to I by thresholding. 

We have seen that a suitable threshold for a greyscale image can sometimes be estimated 
by inspection of its histogram. The same idea applies in the case of colour images. As 
noted in Chapter 6, 3D colour histograms are difficult to manipulate and visualise, and a 
2D projection of the colour histogram may be more convenient. Figure 10.6 shows the 
histogram of the Holly wood image projected onto the R -B plane. Three distinct peaks can 
be identified. One peak is produced by the sign, another by the sky and the third by the 
remaining pixels of the image. It is a simple matter to identify on this histogram and the 
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Figure 10.6 2D histogram of the red and blue components of the Hollywood image. 
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Figure 10.7 Histogram of a greyscale vers ion of the Hollywood image. 
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10.2.3 

other 2D projections pairs of thresholds-{lf a reference colour and distance thresholds­
that will detect the sky only, or the sign only. Given a greyscale version of the Hollywood 
image, with the histogram shown in Figure 10.7, it is possible to isolate the sign from the 
rest of the image by thresholding but the peaks produced by the sky and the vegetation 
overlap, making isolation of these features impossible. 

Java tools for thresholding of grey level and colour 

We have noted in this chapter and in Chapter 6 that grey level thresholding can be viewed 
as a grey level mapping operation, implemented using a look-up table. We can therefore 

LISTING 10.1 A Java class to perform grey level thresholding. 

package com.pearsoneduc.ip.OPi 

public class ThresholdOp extends GreyMapOp { 

public ThresholdOp(int threshold} { 
computeMapping(threshold, 255); 

} 

10 public ThresholdOp(int low, int high) { 
II computeMapping(low, high); 

" } 

" 
14 public void setThreshold{int threshold) { 
15 computeMapping(threshold, 255); 

" } 

" 
IS public void setThresholds(int low, int high) { 

19 computeMapping(low, high); 

'" } 

" 
n public void computeMapping(int low, int high) { 
21 if (low < 0 I I high > 255 I I l ow >== high) 
24 throw new java. awt. image. ImagingDpException( "invalid thresholds II ); 

25 int i; 
26 for (i == 0; i < low; ++i) 
n table[i] == (byte) 0; 
28 for (; 1 <= high; ++1) 
" table [i] = (byte) 255; 
m for (; 1 < 256; ++1) 
}l table [1] ::: (byte) 0; 

" } 
)J 

34 } 
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create a thresholding operator in Java by extending the GreyMapOp class described in 
Chapter 6. The resulting class, ThresholdOp, is shown in Listing 10.1. This class is used 
in two applications provided on the CD: Threshold and GreyMapTool. GreyMapTool 
was discussed in Chapter 6. Its thresholding option allows the user to experiment with 
thresholding of an image using Equation 10.2. The two thresholds T, and T2 can be varied 
interactively using the sliders on the application's control pane1. 

The Threshold application has no GUI, being driven instead by parameters supplied 
on the command line. It can be used to threshold both greyscale and colour images. For a 
greyscale image, one or two thresholds must be specified, e.g., 

java Threshold grey.jpg thresholded.pbm 175 
java Threshold grey.jpg thresholded.pbm 92 140 

For a colour image, three or six thresholds must be specified, e.g., 

java Threshold colour.jpg thresholded.pbm 200 75 128 

Two further thresholding applications are provided on the CD. Iterati veThreshold 
thresholds a greyscale image with a threshold detennined automatically using Algo­
rithm 10.1. Mean grey levels are computed from the histogram of the image, rather than 
the image itself, since this is more efficient. The second program, DistanceThreshold, 
thresholds a colour image using a reference colour and either the radius of a sphere centred 
on that colour or the three radii of an ellipsoid centred on that colour. 

10.3 Contextual techniques 

Thresholding groups together pixels according to some global attribute, such as grey level. 
Two pixels at opposite corners of an image will both be detected if they both have grey levels 
above the threshold, even though they are probably not related in any meaningful way. It is 
possible to distinguish between these two pixels if we additionally take into account their 
separation. This is the basis of contextual segmentation techniques. Contextual techniques 
can be more successful at isolating individual objects in an image because they take into 
account the fact that pixels belonging to a single object are close to one another. 

Approaches to contextual segmentation are based on the concept of discontinuity or the 
concept of similarity. Techniques based on discontinuity attempt to partition the image by 
detecting abrupt changes in grey level. Edge detection techniques, discussed in Section 7.4, 
fall into this category. However, an edge detector will perform a proper segmentation only 
if it generates complete boundaries that enclose relatively uniform regions. Techniques 
based on similarity attempt to create these unifonn regions directly, by grouping together 
connected pixels that satisfy predefined similarity criteria. The results of segmentation may 
depend critically on these criteria and on our definition of connectivity. 

Note that approaches based on discontinuity and similarity mirror one another, in the 
sense that completion of a boundary is equivalent to breaking one region into two. 
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10.3.1 Pixel connectivity 

Pixel connectivity is a central concept of both edge- and region-based approaches to seg­
mentation. In an image with a normal, rectangular sampling pattern, we may define two 
types of neighbourhood surrounding a pixel. A 4-neighbourhood contains only the pixels 
above, below, to the left and to the right of the central pixel. An 8-neighbourhood contains 
all the pixels ofa 4-neighbourhood, plus four diagonal neighbours (Figure 10.8). 
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Figure 10.8 (a) The 4-neighbours of a pixel. (b) The a-neighbours of a pixel. 

A 4-connected path from a pixel PI to another pixel p" is the sequence of pixels 
{PI, P2 , ··· , p,,} , where Pi+1 is a 4-neighbour of Pi for all i = I, ... ,tI - I. The path is 
said to be 8-connected if Pi+1 is an 8-neighbourof Pi . 

Ifwe have a set of pixels and we can identity at least one 4-connected path between any 
pair of pixels from that set, we can say that the set is a 4-connected region. An 8-connected 
region can be defined similarly. The distinction between 4-connectivity and 8-connectivity 
is important. The set of shaded pixels in Figure 10.9, for instance, can be interpreted either 
as one 8-connected region or as two 4-connected regions. 
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Figure 10.9 A set of connected pixels. 

Armed with these definitions of connectivity, we can solve the problem with thresholding 
noted earlier, namely that it groups together pixels with grey levels above the threshold, 
despite the fact that they may not be connected. What we must do is find each connected 
region of pixels that were detected by thresholding and give all the pixels in that region 
their own unique label. One of the simplest and most common labelling algorithms scans 
the image pixel-by-pixel, invoking a recursive labelling procedure whenever a no~-zero 
pixel is found. This procedure implements the 'grassfire' concept. We imagine that a 'fue' 
is started at the pixel, and that it propagates to any of the pixel's 4- or 8-neighbours that 
were also detected by thresholding. Wherever a fire is started, the pixel is 'burnt away' 
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from the input image (i.e., has its value set to zero) so that it cannot be visited again by the 
labelling procedure. At the end of the procedure, all pixels belonging to the region have 
been set to 0 in the input image, making them indistinguishable from the background, and 
the corresponding pixels in the output image have been assigned a region number. The 
region number is then incremented, ready for the next connected region. 

A class called RegionLabelDp that implements this algorithm is provided in the com. 
pearsoneduc.ip.op package. The filter() method of this class and the associated 
recursive labelling method are shown in Listing 10.2. Lines 7 and 8 assign image dimensions 

LISTI NG 10.2 Java code to perform connected region labelling, taken from the 
RegionLabelDp class. 

public Bufferedlmage filter(Bufferedlmage sre, BufferedImage dest) { 

checklmage(src); 
if (dest == null) 

dest = createCompat i bleDestlmage(src, null); 

width = src.getWidth(); 
height = src .getHeight(); 
WritableRaster in = src.copyData(null); 

10 WritableRaster out = dest.getRaster(); 

12 intn = l; 
13 for (int y = 0; y < height; Hy) 
14 for (int x '" 0 ; x < .... idth; ++x) 
15 if (in .getSample (x. y, 0) > 0) { 
16 label (in, out, x, y, n); 
17 ++n; 
18 if (n > MAX_REGIONS) 
19 return dest; 
20 } 

" u return dest; 

" " } 

" 
" 27 private void label(WritableRaster in, WritableRaster out, int x, int y, int n) { 
28 in.setSample(x, y, 0, 0); 
29 out.setSample(x, y, 0, n); 
30 int j, k; 
31 for (int i = 0; i < connectivity; ++i) { 
32 j = X + delta[i) .x; 
3J k = Y + delta [i) .y; 
~ if (inlmage(j. k) && in.getSample(j, k, 0) > 0) 
3~ label(in, out, j, k, n); 

" } 
" } 

" 
" 40 private final boolean inlmage(int x, int y) { 

~I return x >= 0 && x < width &t Y >= 0 && Y < height; 

" } 
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10.3.2 

to instance variables width and height. These variables are used subsequently by the 
method inlmage 0, which determines whether a pixel's coordinates are valid. Line 9 
creates a raster that is a copy of the input image. Copying is necessary because input pixels 
are erased by the grassfire algorithm. Line 12 initialises the region number to 1. The 
first non-zero pixel found in the image will be labelled witb tbis number, as will all other 
non-zero pixels connected to it. Lines 13- 20 scan the image from top to bottom and left to 
right. When a non-zero pixel is found (line 15), the recursive labelling method is invoked 
(line 16) and, when this has finished, the region number is incremented. Since the output 
image is an 8-bit greyscale image, there can be no more than 255 different labels assigned 
to regions. Lines 18 and 19 terminate the labelling procedure if this limit is exceeded. 

The label () method burns away the input pixel (line 28) and sets the corresponding 
output pixel to the region number (line 29). It tben examines each of the pixel's neighbours. 
Neighbours are located by adding to pixel coordinates x and y a displacement vector from 
array delta (lines 32 and 33). This array has four or eight elements, depending on the 
connectivity that has been specified. Each element is an instance of the Point class. If 
the coordinates calculated for the neighbour lie within the image and that neighbour has a 
non-zero value (line 34), label () invokes itself on that neighbouring pixel. 

An application called RegionLabel that uses RegionLabelOp can be found on the 
CD. It requires an input filename, an output filename and the desired pixel cOlmectivity as 
command line arguments. 

Region similarity 

The uniformity or otherwise of a connected region of pixels may be indicated by a unifor­
mity predicate, a logical statement that is true only if pixels in the region are sufficiently 
similar in terms of grey level, colour or some other property. A common uniformity predi­
cate is 

peR) = {TRUE 
FALSE 

if If(j, k) - f(111, 11)1 ,;; t1, 

otherwise, 
(10.6) 

where (j, k) and (m, n) are the coordinates of neighbouring pixels in region R. This 
predicate states that a region R is uniform if (and only if) any two neighbouring pixels differ 
in grey level by no more than ~. A common misconception is that this restricts the grey 
level variation within a region to a range of width t1. In fact, small changes in grey level 
from neighbour to neighbour that satisfy Equation 10.6 can accumulate, resulting in a big 
difference in grey level between opposite sides of a large region. 

A similar predicate is 

p eR) = {TRUE 
FALSE 

if lf(j, k) - f.LR1 ,;; t1, 

otherwise, 
(10.7) 

where f(j, k) is the grey level ofa pixel from region R with coordinates (j, k) and MR is 
the mean grey level of all pixels in R except the pixel at (j, k). 

Equations 10.6 and 10.7 are easily generalised to cope with colour images. Now, instead 
of computing a difference in grey level, we compute the distance in ROB space between 
the colours of neighbouring pixels, or between the colour of a pixel and the mean colour 
for the region. 
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Region growing 

Region growing is a bottom-up procedure that starts with a set of seed pixels. The aim is to 
grow a uniform, connected region from each seed. A pixel is added to a region if and only if 

• It has not been assigned to any other region 

• It is a neighbour of that region 

• The new region created by addition of the pixel is still unifonm 

The procedure is outlined in Algorithm 10.2, assuming the uniformity predicate of 
Equation 10.7. The progress of region growing in a very simple image is illustrated in 
Figure 10.10. Here, 8-connectivity is assumed. The uniformity predicate is that given in 
Equation 10.7, with f::,. = 3. 

ALGORITHM 10.2 Region growing. 

Let f be an image for which regions are to be grown 
Define a set of regions, RJ, R2 . ... RIl , each consisting of a single seed pixel 
repeat 

for i = I to II do 
for each pixel, p, at the border of Ri do 

for all neighbours of p do 
Let x , y be the neighbour's coordinates 
Let J1.j be the mean grey level of pixels in Ri 
if the neighbour is unassigned and If Cx, y) - f.L;] ,;; f::,. then 

Add neighbour to Ri 
Update f.Li 

end if 
end for 

end for 
end for 

until no more pixels are being assigned to regions 
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Figure 10.10 Region growing. Ca) Seed pixels. Cb) First iteration. (e) Final iteration. 
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Java implementation of region growing 

An implementation of Algorithm 10.2 is provided in the class RegionGrower, part of the 
com. pearsoneduc. ip. op package. A RegionGrower object is created from an image, 
a list of seed pixel coordinates, a connectivity and a uniformity threshold. The image 
can be a greyscale or colour image. Seed pixel coordinates are specified as instances of 
java. awt. Point, stored in a List object--either a Vector or an instance of one of the 
newer collection classes, ArrayList and LinkedList. An optional fifth parameter is 
a Boolean flag, specitying whether a RegionGrower should create and update a special 
'status image' that can be used to monitor the progress of a region growing operation. If 
no fifth parameter is specified, then no monitoring will be done. 

The simplest way to use RegionGrower is to invoke its growToCompletion() method. 
This iterates until no more pixels can be assigned to regions. The getRegionlmage 0 
method can then be called to retrieve a greyscale image in which pixels are labelled by 
their region number or have a value of zero to indicate that they were not assigned to any 
region. The following example shows how a RegionGrower can be created and used in 
this manner. First, we create a list containing two seeds and then a RegionGrower that 
will grow these seeds into regions with 8-connectivity, using a uniformity threshold of25. 
The growToCompletion 0 method is called to grow the two regions, and the number of 
iterations performed is reported on the standard output stream. Finally, the region image is 
written to a file. 

List seeds = new ArrayList(); 
seeds.add(new Point(128, 128)); 
seeds.add(new Point(75. 30)); 
RegionGrower grower = new RegionGrower(image, seeds, 8, 25); 
grower,growToComplet ion ()j 
System,out.println(grower.getNumlterations() + " iterations"); 
ImageEncoder output = ImageFile,createlmageEncoder(lIregions,png ll )j 
output.encode(grower .getRegionlmage()); 

More control is possible using the grow 0 method, which performs a single iteration of 
the region growing algoritiun. The isFinished 0 or isNotFinished 0 methods, both of 
which return Boolean values, can be used to check whether region growing has completed. 
After each call to growO , getRegionlmageO can be invoked to retrieve the current 
set of regions. Alternatively, getStatuslmage 0 can be used (provided that the status 
monitoring parameter was supplied and set to true when the RegionGrower was created). 
This method returns a colour image with an alpha channel. Unassigned pixels are transparent 
in this image, allowing it to be drawn on top of the input image if required. Pixels assigned 
to regions are opaque, with a colour specified by the setAssignedColour () method. 
Border pixels with neighbours that have not yet been examined are given a different colour, 
specified by setBorderColour O. The following code fragment shows how all these 
methods can be used. 

RegionGrower grower = new RegionGrower(image, seeds, 8, 25, true); 
grower.setAssignedColour(Color.blue); 
grower.setBorderColour(Color,cyan); 
Bufferedlmage status; 



Plate A Histogram equalisation of a colour image. Top: originaJ image. Middle: effect 
of equalising R, G, and 8 components separately. Bottom: effect of equalising 
the intensity component in HSI space. 



Plate B Effect of modifying the hue of the butterfly image. 

Plate C Effect of modifying the saturation of the butterfly image. Top: Saturation 
reduced to 60% of its original value. Bottom: Saturation increased by 60%. 



(a) 

(b) (c) 

Plate D Examples of RGS thresholding. (a) Colour image. (b) Result of thresholding 
with TR = TG = TB = 200. (c) Result of threshold with a range of {SO, 100] for 
the red component, [100, 150] for green and [150, 200J for blue . 
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Plate E Image in Plate 0 (a), threshold to detect all colours within a distance of 50 
from the colour (80, 100,50), 



~ R egionG rowing Tool: dice_ png ROO t3 

Threshold 145 I 

Plate F The Reg ionGrowingTool program. 



while (grower.isNotFinished()) { 
grower. grow 0 ; 
status = grower.getStatusImage(); 
II do something with status image ... 

} 
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Two applications that use RegionGrower are provided on the CD. The first, RegionGrow, 
reads an image from a file named on the command line and grows a single region from 
a seed with the specified x and y coordinates. Connectivity and the uniformity threshold 
must also be specified on the command line. An example of use is 

java RegionGrow test.jpg region.pbm 100 100 4 35 

which reads the image test .jpg, grows a region from the point (l00, 100) using 4-
connectivity and a threshold of 35 and then writes the resulting region image to the file 
region. pbm. 

The second application, RegionGrowingTool , is a fully-interactive program with a 
graphical user interface. Tt displays an image read from a file named on the command line 
and allows the user to define seed pixels on that image using the mouse. A menu option is 
provided to initiate region growing from those seeds. The growing regions are drawn on top 
of the image, making it easy to monitor the progress of the operation. Once regions have 
been grown, they can be saved to a file as an image. The user also has the option of starting 
again from the same seeds (adding more if necessary) or of starting again with a completely 
new set of seeds. This makes it possible to experiment with different connectivities and 
uniformity thresholds. Menu options permit switching berween 4- and 8-connectivity, and 
a threshold can be specified in a text field beneath the image. Plate F shows the program in 
action. 

limitations of region growing 

Region growing isn't a particularly stable operation. For example, Figure 10.9 indicates 
that 4-connected region growing may produce different results from 8-connected region 
growing. Also, the results obtained can be very sensitive to our choice of uniformity 
predicate. This can be seen in Figure 10.11, which shows attempts to segment the dice 
image by region growing. Both regions were grown using 8-connectivity from the same 
seed, on the upper-left face of the die. The only difference is in the choice ofa value for t;. 

in Equation 10.7-41 for the region in (a), 42 for the region in (b). 
Note that a complete segmentation of an image must satisfy a number of criteria: 

1. All pixels must be assigned to regions. 

2. Each pixel must belong to a single region only. 

3. Each region must be a connected set of pixels. 

4. Each region must be uniform. 

5. Any merged pair of adjacent regions must be non-uniform. 

Region growing satisfies the third and fourth of these criteria, but not the others. It fai ls 
to satisfy the first and second criteria because, in general, the number of seeds defined by 
the user will not be sufficient to create a region for every pixel. The fifth criterion is not 
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10.3.4 

(a) (b) 

Figure 10.1 I Sensitivity of region growing to the uniformity threshold, D.. (a) Region 
grown with D. = 41. (b) Region grown with D. = 42. 

satisfied because the regions grown from two nearby seeds are always regarded as distinct, 
even if those seeds are defined in a part of the image that should be segmented as a single 
regIOn. 

The split and merge algorithm 

A complete segmentation is possible if we adopt a top-down approach, in which the entire 
image is considered initially to be a single region. Inevitably, the uniformity predicate will 
be false for this region, so we divide it into subregions. These subregions are then split 
or merged in an attempt to meet the uniformity criteria. The procedure iterates until all 
regions are uniform or until the desired number of regions have been established. 

A COnllTIon splitting strategy for a square image is to divide it recursively into smaller and 
smaller quadrants until, for any region R, P(R) is true. In other words. if P(image) is false, 
we divide the image into four quadrants; if P(quadrant) is false, we divide that quadrant 
into subquadrants; and so on. If region splitting alone were used to segment the image, 
the final partition would be likely to contain many small, adjacent regions with identical 
properties. We therefore alternate splitting with a merging stage, in which two adjacent 
regions Ri and R j are combined into a new, larger region if the unifonnity predicate for the 
union of these two regions, P(R; U Rj), is true. 

10.4 Segmentation using other image properties 

Pixel grey level and colour are not the only image properties that can be used for segmenta· 
tion. In Chapter 5, for instance, we saw that a difference in pixel grey level for two images 
acquired at different times could be thresholded to detect change in a scene. Many edge 
detection techniques also rely on the thresholding of differences in grey level-although 
here it is a spatial, rather than a temporal, difference that is is thresholded. 

Segmentation techniques based on grey level or colour are often unsuccessful when 
applied to complex, highly-textured images. Consider the image in Figure 10.12(a). for 
example. This is a square containing a random texture superimposed on a background with 
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(a) (b) 

Figure 10.12 Performance of grey level thresholding on textured images. (aJ Image of 
a square. (b) Result of thresholding the image in (a). 

a different random texture. The mean grey levels of the square and the background in this 
image are identical and their grey level ranges overlap-suggesting that thresholding on 
grey level will fa il to distinguish the features. This is confirmed by Figure IO.12(b). To 
achieve a good segmentation. we would need to make use of texture measures rather than 
grey level. 

Grey level is an attribute associated with a single pixel; texture. on the other hand, is a 
property of groups of pixels. A local measure of texture must therefore be computed over a 
neighbourhood. For random textures, such as those of Figure 10.12, statistical measures may 
be appropriate. One ofthe simplest is the variance of grey levels in an n x II neighbourhood 

(a) (b) 

Figure 10.13 Texture segmentation using grey level variance. (aJ Variance image. (b) 
Result of thresholding the image in (a). 
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Ca) 

(b) Cc) 

Figure 10.14 (a) An image consisting of two repeating patterns. (b) Spectrum of a 
32 x 32 sample of the background pattern. (c) Spectrum of a 32 x 32 sample of the 
smaller patterned region. 

centred on a pixel. For n odd, this is given by 

1 n/2 n/2 

0'2=2 L L [f(x+j.y+k)-fLl2, 
n j=~n/2 k=-nj2 

where fL, the mean grey level in the neighbourhood, is 

1 n/ 2 n/2 

fL=2 L L f(x+j,y+k). 
n j=-n /2 k=-n/2 

(10.8) 

(10.9) 

Figure 10.13(a) is an image of grey level variance in 7 x 7 regions of the textured 
image in Figure 10.12(a). Bright pixels in this image signify regions with high variance. 
Figure 10.13(b) shows the result of applying a threshold to the variance data. The square 
has been detected adequately because local variance at its pixels is significantly greater than 
the variance at background pixels. 

For other types of texture, simple statistical measures are of little use. In the image 
of Figure 10.14(a), for instance, the square and the background have similar variances, 
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so we must turn to some other kind of texture measure in order to segment the image 
adequately. The periodic nature of the two patterns visible in the image suggests that they 
might be distinguishable in the frequency domain. This can be investigated by using the 
SpectralProbe application described in Chapter 8 to compare the spectra of small (e.g., 
32 x 32) samples taken from the two patterns. Examples of these spectra are shown in 
Figure 10.14. As expected, there are significant differences in the spectra. 

Spectral techniques for texture segmentation typically use the power spectrum of a region 
in an image rather than its amplitude spectrum. Radial or angular integration of the power 
spectrum is often performed. Radial integration basically sums power within a ring of 
radius r and width I:::!.r. Angular integration sums power within a sector defined by a radius, 
r, an orientation, e, and an angular width, l1e (Figure 10.15). The ring-based measurement 
provides information on the scale of the texture; high power at small radii signifies coarse 
texture, whereas a concentration of power at large radii indicates fine texture. The sector­
based measurement provides information on the orientation of the texture; a texture that is 
oriented in a direction indicated by an angle ¢ will result in high power for a sector at angle 

e=¢+; 

r 

r e 

(a) (b) 

Figure 10.15 Texture measures derived from the power spectrum. (a) Radial power is 
measured by integrating over a ring-shaped region of the spectrum. (b) Angular power is 
measured by integrating over a sector of the spectrum. 

10.5 Further reading 

Jain et aJ. [25] and Parker [36] describe a number of techniques for threshold selection. 
Parker also compares the performance of each of these techniques [36]. 

Pitas [37] presents implementations of region growing, region splitting and the split and 
merge algorithm. These techniques are also described by Parker [36]. Lyon [29] describes 
how regions can be segmented by means of a heuristic edge searching technique. 
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Parker [36] discusses a variety of approaches to texture measurement. Some discussion 
can also be found in the book by Jain et al. [25]. 

I 0.6 Exercises 

I. A biscuit factory has installed an image processing system for quality control. The 
system uses a camera to acquire images of biscuits moving on a conveyor belt. The 
biscuits are somewhat brighter than the conveyor belt, and hence arc represented by 
higher grcy levels. Grey level thresholding is used to detect the biscuits, and the resulting 
binary images are analysed to determine biscuit size. 

What would happen to estimates of biscuit size if the threshold were too low? What 
would happen to size estimates if the threshold were too high? 

2. It was stated in Section 10.3 that region-based and boundary-based segmentation tech­
niques mirror one another. Is it reasonable, therefore, to assume that region growing 
gives the same results as edge detection? 

3. What disadvantages might there be to a quadtree representation of regions, from the 
viewpoint of image analysis? (Hint: think about what happens to an object that straddles 
the boundary between regions.) 

4. Implement in Java the 'split and mergc' algorithm described previously. 
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The binary images produced by simple segmentation techniques slich as thresholding 
may con/ain numerous imperfections caused by noise, texture or the inaccurate speci­
fication of a threshold. j\lforphological image processing techniques can remove these 
imperfections and provide us with information on thejorm and structure a/the image. 
Morphological techniques are a/so applicable to greyscale images, where they can 
be used/or non-linear smoothing andfeature enhancement. In this chapter, we start 
by considering the basic concepts of morphological image processing before moving 
011 to consider the standard operations peiformed on binary images. We conclude the 
chapter with a brief examination of morphological operations on greyscale images. 

11.1 Introduction 

The term 'morphological image processing' describes a range of non-linear image pro­
cessing techniques that deal with the shape or morphology of features in an image. Most 
morphological techniques operate on binary images; in fact, they are often used to remove 
noise or other artefacts in the binary images produced by an imperfect segmentation process. 
(This is why we are considering these techniques now, after the chapter on segmentation, 
rather than earlier, in the chapter on neighbourhood operations.) Morphological operations 
can also bc applied to greyscale images; we shall present some examples of this at the end 
of the chapter, but most of our attention will be devoted to binary morphology. 

Morphological techniques typically probe an image with a small shape or template known 
as a structuring element. The structuring element is positioned at all possible locations 
in the image and it is compared with the corresponding neighbourhood of pixels. Mor-

271 
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11.2 

11.2.1 

phological operations differ in how they carry out this comparison. Some test whether the 
structuring element 'fits' within the neighbourhood; others test whether it 'hits' or intersects 
the neighbonrhood. These concepts are illustrated in Figure 11.1. (Precise definitions of 
fitting and hitting will follow shortly.) A morphological operation on a binary image creates 
a new binary image in which a pixel has a non-zero value only if the test is successful at 
that location in the input image. 

, 

-B- -

I ; J 

I 
I 

A 

CJ 
Figure 11.1 Probing of an image (left) with a structuring element (right). At A. the 
structuring element fits the image; at B, it hits (or intersects) the image; at C, it neither 
fits nor hits the image. 

Basic concepts 

Structuring elements 

The structuring element applied to a binary image can be represented as a small matrix of 
pixels, each with a value of lor O. The dimensions of the matrix determine the overall size 
of the structuring element, and its shape is determined by the pattern of ones and zeros. 
For example, we can define a 5 x 5 structuring element that is square, diamond-shaped or 
cross-shaped: 

[i i] [:11:] [:1 In 
A structuring element also has an origin. Note that the origin can be outside the structuring 

element, although this is uncommon; usually, one of its pixels acts as the origin. Strictly, 
this should be indicated when representing the structuring element-by displaying the value 
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of that pixel in a bold font, for example: 

As with convolution kernels, it is common for structuring elements to have odd dimen­
sions. This allows the origin to be defined as the centre of the matrix. We shall assume this 
to be case throughout this chapter. 

Fitting and hitting 

When we place a structuring element in a binary image, each of its pixels is associated 
with the corresponding pixel of the neighbourhood under the structuring element. In this 
sense, a morphological operation resembles a 'binary correlation'. However, the operation 
is logical rather than arithmetic in nature. The structuring element is said to fit the image 
if, for each of its pixels that is set to I, the corresponding image pixel is also I. (We assume 
here that the image has values of 0 and I-although we could allow a different non-zero 
value and simply test whether the image is nOll-zero at points where the structuring element 
is 1.) Structuring element pixels that are 0 define points where the corresponding image 
value is irrelevant. 

For example, suppose we have two 3 x 3 structuring elements 

SI = [ : 

Now let us imagine that these structuring elements are positioned over the 3 x 3 neigh­
bourhoods labelled A, Band C in the image of Figure 11.2. Both SI and S2 fit the image at 

o 0 0 0 0 0 0 0 0 000 C 
BOO 0 1 100 0 0 000 

o 0 1 1 1 1 1 0 0 0 0 0 
o 1 1 1 1 1 1 1 0 0 0 0 
o 1 1 1 111 1 0 0 0 0 
o 0 1 1 1 1 1 1 0 0 0 0 
o 0 1 1 1 1 1 1 1 0 0 0 
o 0 1 1 1 1 1 1 1 1 1 0 
o 0 0 0 0 1 1 1 1 1 1 0 
o 0 0 0 0 0 0 0 0\ 0 0 0 

A 

Figure 1 1.2 Binary image used to test fitting and hitting of structuring elements S J and 
S2 (see text). 
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A. (Remember that structuring element pixels set to 0 are ignored when testing for a fit.) 
However, only S2 fits the image at B, and neither SI nor -'2 fit at C. 

Similarly, a structuring element is said to intersect, or hit, an image if, for any of its pixels 
that is set to 1, the corresponding image pixel is also 1. Again, we ignore image pixels for 
which the corresponding structuring element pixel is O. Referring again to Figure 11.2, we 
can see that both SI and S2 hit the image in neighbourhood A. The same holds true at B. At 
C, however, only SI hits the image. 

Java classes to represent structuring elements 

Figure 11.3 is a class diagram showing how structuring elements and the operations they 
perform can be represented in Java. The basis for this design is an abstract class called 
StructElement. Structuring elements that apply to binary images are represented by 
BinaryStructElement, a class that inherits from StructElement. (Thi s seems a com­
plicated way of doing things; it begins to make sense when you consider that it is pos­
sible to have structuring elements that apply to greyscalc images. The StructElement 
class specifies the attributes and behaviour common to both types of structuring element.) 
StructElement provides a structuring element with dimensions, an origin and storage for 
its pixel values. It also provides various methods that inspect the values ofthese attributes. 
Methods to set the values of structuring clement pixe ls or write structuring element data to 
an output stream of some kind are declared abstract, so implementations must be provided 
in derived classes. 

StructElement 
{abstract} 

/I int width 
/I int height 
# Point origin 
Ii int[) [) pixel 

+ 5tructEl ement(int w, i nt h) 
+ Str uctElement(int w, int h. Point p) 
+ bool ean equals(Object obj) 
+ String toStringO 
+ int getWidthO 
+ int getHe i ghtO 
+ Point getOrigin(Point p) 
+ void setOrigin(Point p) 
+ int getPixe1(i nt x. int y) 
+ vOld setPixe7s(int[] values) 
+ void setPixe1s(-jnt[][] values) 
+ void setPixels(String valueString) 
+ void wr'itePixe 7s (Wdt:er destination) 
+ vojd wr1te(lt'r'iter destination) 

<<i nte rface» 
Cloneable 

<<i nterface» 
StructElementTypes 

if 
, , , , 

BinaryStructElement 

+ Binary5tructElementO 
+ Binary5tructElement(int w, int h) 
+ Binary5tructEl ement(int w. int h, 
+ BinaryStructElement(int type) 
+ Bi naryStructElement(Reader source) 
+ Object cloneO 

Poi nt p) 

+ BinaryStructElement getRotatedVersionO 
+ bool ean equals(Object obj) 
+ void setPixel(int x, i nt y) 
+ void clearPixel( i nt x. int y) 
+ void setPixe1s0 
+ boolean fits(Raster raster, i nt x , int y) 
+ boolean hi t s(Raster raster, int x, int y) 

Figure I 1.3 Java classes for the representation of structuring elements. 
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A BinaryStructElement can be created in a variety of ways. The default constructor 
creates a 3 x 3 square structuring element with its origin at the centre. Two other con­
structors allow the dimensions or the dimensions and the origin to be specified explicitly. 
Again, strucruring element pixels are aU set to I by default. A fourth constructor accepts 
a single integer specifying one of a range of standard srructuring elements. These stan­
dard strucruring elements are specified by constants defined in the StructElementTypes 
interface: 

public interface StructElementTypes { 
int CROSS_3x3 = 1; 
int CROSS_5x5 = 2; 
int DIAMOND_5x5 = 3; 
int DIAMOND_7x7 = 4; 
int DISK 5x5 5' , 
int DISK_7x7 = 6; 

} 

The fifth and final constructor creates a BinaryStructElement using a Reader object as 
a data source. The data read from this source must conform to a specific format. A 5 x 5 
cross-shaped structuring element with a central origin, for example, should look like this: 

# binary structuring element 
# width=5 
# height =5 
# xorigin=2 
# yorigin=2 
00100 
00100 
11111 
00100 
00100 

The write 0 method wiU output a BinaryStructElement in this format to a Wri ter 
that represents the destination for the data. 

Once a BinaryStructElement has been created, its pixels can be modified on an 
individual basis using setPixel () - which sets the pixel at the specified coordinates to l ­
and clearPixel O-which sets a pixel atthe specified coordinates to O. The setPixels 0 
method with no parameters sets all pixels to 1. Other versions of this method accept new 
pixel values stored in one- or two-dimensional int arrays, or stored as the characters "1" 
and "0" in a String object. 

Two key methods of BinaryStructElement are fits 0, which returns true if the 
element fits in an image (specified by its raster) at particular coordinates, and hits 0, 
which returns true if the element hits an image at particular coordinates. An example of 
some Java code that caUs these methods is shown belo\\". 

BufferedReader input = 
new BufferedReader (new InputStreamReader(System.in)); 

Raster raster = image.getRaster () ; 
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while (true) { 

} 

try { 

} 

String line = input.readLine(); 
StringTokenizer parser = new StringTokenizer(line); 
int x = Integer.parselntCparser.nextToken(»; 
int y = Integer.parselnt(parser.nextToken()); 
if (element.fits(raster, x, y» 

System.out.println("SE fits at (" + x + 11,11 + Y + 11)1'); 

else if (element.hits(raster, x, y» 
System.out.println("SE hits at (" + x + 11,11 + Y + 11)"); 

} 

catch (Exception e) { return; } 

This code assumes the existence of a Bufferedlmage object called image and a 
BinaryStructElement called element. It reads continually from the standard input, 
expecting x and y coordinates as integers typed on a single line, separated by whitespace. 
The loop terminates if this is not the case. Once coordinates have been obtained, the code 
invokes the fits () and hits () methods and indicates whether the structuring element 
fits or merely hits the image at those coordinates by printing an appropriate message on the 
standard output stream. 

StructElement and BinaryStructElement are both part of the com. pearsoneduc . 
ip. op package on the CD. 

Fundamental operations 

Erosion 

The erosion of an image f by a structuring element s is denoted f e s. To compute the 
erosion, we position s such that its origin is at image pixel coordinates (x, y) and apply the 
rule 

{
I ifs fits t, 

g(x,y) = . o otherwISe, 
(11.1) 

repeating for all x and y. Thus, erosion creates a new image that marks all the locations of 
a structuring element's origin at which it fits the input image. 

Remember that the origin can be external to the structuring element; thus, it is possible that 
the comparison of structuring element pixels with image pixels takes place some distance 
from (x, y). In fact, at certain coordinates, a structuring element's pixels may lie beyond 
the bounds of the input image, making comparison impossible. For the simplest case of 
a structuring element with odd dimensions and an origin at the centre of the matrix, this 
problem becomes identical to that which we encountered when considering convolution and 
rank filtering in Chapter 7, and it can be dealt with in a similar manner. 
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What effect does erosion have on an image? Figure 11.4 shows erosions of a binary image 
using 3 x 3 and 5 x 5 square structuring elements. For added clarity, we have inverted 
these images, so you should think of the black pixels as having the value I and the white 
background as having the value O. We can see from these examples that erosion is an apt 
term, because the operation seems to strip away a layer of pixels from an object, shrinking 
it in the process. Pixels are eroded from both the inner and outer boundaries of regions, so 
erosion will enlarge the holes enclosed by a single region as well as making the gap between 
different regions larger. Erosion will also tend to eliminate small extrusions on a region's 
boundaries. For example, in Figure 11.4(b), we can see that the hole inside the character 
has become larger, and in Figure 11.4( c) we can see that the serifs at the top and bottom of 
the character have disappeared. 

l 
(a) (b) (c) 

Figure 11.4 Examples of binary erosion. (a) Input image. (b) Erosion by a 3 x 3 square 
structuring element. (c) Erosion by a 5 x 5 square structuring element. Black represents 
a pixel value of I, white a pixel va lue of O. 

Figure 11.4 demonstrates that the result of erosion depends on structuring element size, 
with larger structuring elements having a more pronounced effect. Note that the result of 
erosion with a large structuring element is similar to the result obtained by iterated erosion 
using a smaller structuring element of the same shape. For example, if SI and S2 are a pair 
of structuring elements identical in shape, with 52 twice the size of SI, then 

An obvious application of erosion is in the removal of unwanted, small-scale features 
from a binary image. An unfortunate side-effect of this is a reduction in the size of features 
that we want to preserve. (We will encounter shortly a similar operation that does not suffer 
from this problem.) 

Another application of erosion is boundary finding. Suppose we have an image containing 
various connected regions of pixels. We wish to remove pixels inside these regions, leaving 
only the pixels at the boundary of each region. We know already that the eroded image 
contains regions lacking these boundary pixels, so we can find the boundaries by subtracting 
the eroded image from the original image, i.e., 

g = f- (f8s), (l12) 
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Figure I 1.5 A region boundary detected by subtracting an eroded image from an 
uneroded image. 

where f is an image of the regions, s is a 3 x 3 square structuring element and g is an image 
of the region boundaries. Figure 11.5 shows boundaries of the letter A image, found in this 
manner. 

Dilation 

The dilation of an image f by a structuring element s is written f 6) s. To compute the 
dilation, we position s such that its origin is at pixel coordinates (x, y) and apply the rule 

{
I ifs hits f, 

g(x,y) = . o otherWise, 
(11.3) 

repeating for all pixel coordinates. Dilation creates a new image showing all the locations 
of a structuring element's origin at which that structuring element hits the input image. As 
with erosion, we must deal with the possibility that there are no image pixels corresponding 
to structuring element pixels for certain positions of its origin. 

Figure 11.6 shows dilations of the letter A image by 3 x 3 and 5 x 5 square structuring 
elements. We can see that dilation has the opposite effect to erosion. It seems to add a 
layer of pixels to an object, thereby enlarging it. Pixels are added to both the inner and 

(a) (b) (c) 

Figure I 1.6 Examples of binary dilation. (a) Input image. (b) Dilation by a 3 x 3 square 
structuring element. (c) Dilation by a 5 X 5 square structuring element. 
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outer boundaries of regions, so dilation will shrink the holes enclosed by a single region 
and make the gaps between different regions smaller. Dilation will also tend to fill in any 
small intrusions into a region's boundaries. 

The results of dilation (or erosion, for that matter) are influenced not just by the size of 
a structuring element but by its shape, also. This can be seen in Figure 11. 7, which shows 
the letter A image dilated by a large square and a large disc. Dilation by the square has 
thickened the character without changing its shape; dilation by the disc, on the other hand, 
has rounded the character's corners. Why does this happen? 

(a) (b) 

Figure I 1.7 Effect of structuring element shape on dilation. (a) Square. (b) Disc. 

Let us suppose that we are performing dilation on an image of a cross-shaped object, 
using structuring elements that are square and disc-shaped. A pixel in the output image will 
be set to 1 whenever the structuring element intersects the object. This will occur at points 
where the structuring e lement is just touching the object, but it will no longer occur if we 
move the structuring element away from the object. We can therefore imagine sliding the 
structuring element around the boundary of the object. such that it is always touching the 
object. The closed path marked out by the structuring element's origin as it slides around 
the boundary represents the limit of the dilation; pixels inside this path are set to 1 in the 
output image, but pixels outside it remain at O. When a square slides around the boundary 
of the cross-shaped object, it encounters concave and convex right-angled corners. In either 
case, the path marked out as it moves around the corner has the same shape as the comer, 
so dilation by the square enlarges the object but does not change its shape (Figure 11.8). 

Now, consider what happens when we di late the image with a disc instead of a square. 
When a disc sliding around the outside of the object encounters a concave right-angled 
corner, the path traced by its origin is also right-angled. But when the disc slides around a 
convex comer, the path traced by its origin is curved (Figure 11.9). Hence, dilation by the 
disc enlarges the object and smoothes its convex corners. 

We can visualise erosion in the same manner, only now we must imagine that we are 
sliding the structuring element around the boundary on the inside of the object. The path 
traced out by the structuring element's origin represents the limit of the erosion; pixels 
inside this path are set to 1 in the output image but pixels outside it remain at O. A corner 
that is concave to a structuring element sliding around the outside of the object will appear 
convex to a structuring element sliding around the inside of the object, and vice versa. 
Consequently, we can expect erosion to have the opposite effect to dilation; erosion by a 
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Figure I 1.8 Effect of dilation by a square structuring element on concave and convex 
corners. 

Figure 11.9 Effect of dilation by a disc-shaped structuring element on concave and 
convex corners. 

disc will shrink the object and smooth its concave corners, but will leave the convex corners 
unaffected (Figure 11.10). 

Dilation is said to be the dual of erosion. This is merely a more precise way of saying 
that the two operations have opposite effects. Formally, we can write that 

f $ s = (f' e 5)' , (11.4) 

where the superscript c denotes the complement of an image, i.e. , the image produced by 
replacing 1 with 0 and vice versa, and s is the structuring element s rotated by 1800

• Many 
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Figure 11.10 Effect of erosion by a disc-shaped structuring element on concave and 
convex corners. 

structuring elements are symmetrical with respect to rotation, allowing us to replace s with 
s in Equation 11.4. This equation tells us that, to dilate an image by a structuring element s, 
we can erode the complement of the image by s (or, if necessary, a rotated version of s) and 
then take the complement of the eroded image. In practice, this means that both dilation 
and erosion can be carried out by a single piece of code that performs an erosion- provided 
that we also have a routine that computes the complement of an image. 

If we consider a binary image to be a collection of connected regions of pixels set to 1 
on a background of pixels set to 0, then erosion can be viewed as the fitting of a structnring 
element into these regions and dilation can be viewed as the fitting of a structuring element 
into the background, followed by inversion of the result. This explains why erosion by a 
disc has the effect of smoothing the concave corners of an object and why dilation by a disc 
has the effect of smoothing its convex corners. 

Implementations of erosion and dilation in Java 

In the com.pearsoneduc.ip.op package on the CD are the classes BinaryErodeOp 
and BinaryDilateOp, These behave like any other BufferedImageOp class. Both ex­
tend BinaryMorphologicalOp. This class extends StandardGreyOp and overrides its 
checklmage 0 method with a new version that tests whether an image is suitable for 
binary morphological operations. True binary images, of type Buff eredlmage . TYPL 
BYTE_BINARY, are suitable for processing, as are 8-bit greyscale images with only two grey 
levels, one of which is zero. An ImagingOpException will be thrown if an attempt is 
made to erode or dilate any other type of image. BinaryMorphologicalOp contains one 
instance variable, nonZeroValue. This is set to I by check Image 0 if the input image is 
a true binary image, or 255 if it is a two-level greyscale image. 

When creating a BinaryErodeOp or a BinaryDilateOp, an instance of a 
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BinaryStructElement must be supplied as a parameter to the constructor. For ex­
ample, to create an operator that erodes an image using a 5 x 5 diamond-shaped structuring 
element, we would use the following code: 

BinaryStructElement structElement 
new BinaryStructElement(StructElementTypes.DIAMOND_5x5); 

BufferedlmageOp erosion = new BinaryErodeOp(structElement); 

We then simply need to invoke the filter() method of BinaryErodeOp in the usual 
manner to perform the erosion. This method is shown in Listing 11.1. Lines 17- 23 use the 
dimensions of the input image together with the dimensions and origin of the structuring 

LISTING 11.1 BinaryErodeOp's filter() method. 

package com.pearsoneduc.ip.op; 

public Bufferedlmage filter(Bufferedlmage STC, Bufferedlmage dest) { 

checklmage(src); 
if (dest =~ null) 

dest = createCompatibleDestlmage(src, null); 

10 int w = sre. getWidthO; 
II int h = src.getHeightO; 
12 Raster srcRaster = sre.getRasterO; 
13 WritableRaster destRaster "" dest.getRaster(); 

15 I I Determine range of pixels for which operation can be performed 

" 
17 Point origin = struetElement. getOrigin(nulD ; 
18 int xmin Math.max(origin.x, 0); 
19 int ymin Math.max(origin.y, 0); 
10 int xmax origin.x + w - structElement.getWidth(); 
21 int ymax origin.y + h - structElement.getHeight(); 
22 xmax Math.min(w-1, xmax); 
23 ymax Math.min(h-1, ymax); 

" 
25 II Fit structuring element into source image 

" 
n for (int y = ymin; y <= ymax; ++y) 
28 for (int x = xmin; x <= xmax; ++x) 
29 if (structElement.fits(srcRaster, x, y)) 
30 destRaster.setSample(x, y, 0, nonZeroValue); 

" 
32 return dest; 

" 
" } 
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element to determine bounds within which the image and the structuring element can be 
compared. Lines 27- 30 iterate between these bounds, invoking the fits O method of the 
BinaryStructElement object at each pixel and setting the corresponding output pixel to 
the non-zero value (l or 255) if there is a fit. 

The BinaryDilateDp class is almost identical to BinaryErodeDp. Its filter() 
method looks very much like that in Listing 11.1; the only difference is line 29-which, for 
BinaryDilateDp, invokes the hits() method of the structuring element rather than the 
fi ts () method. 

Two applications are provided on the CD to perform binary erosion and dilation. They 
are called, un surprisingly, BinaryErode and BinaryDilate. Both take an input image 
filename, an output image filename and the name of a file containing a structuring element 
as command line argument. The format for the structuring element is that described in 
Section 11.2.3. 

1 1.4 Compound operations 

Many different types of morphological operation can be represented as combinations of 
erosion, dilation and various other simple operations that will be familiar to anyone versed 
in the language of set theory. One operation that we have mentioned already is calculation 
of the complement of a binary image, which involves application of the rule 

g(x,y) = g if j(x, y) = 0, 

ifj(x ,y) = I , 
(11.5) 

to all pixels of the image. Another operation is intersection. The intersection of two binary 
images f and g is the set of non-zero pixels common to both images. Intersection is denoted 
by the expression 

h = jng 

and is computed by applying the rule 

I( ) 
{

I ifj(x,y) = 1 andg(x,y) = 1, 
1 x.y = 

. 0 otherwise, 
(1 1.6) 

to all pixels. A third operation is union. The union of two binary images j and g is denoted 
by the expression 

h = jUg 

and is computed by applying the rule 

I( ) 
{

I ifj(x,y) = 1 org(x,y) = 1, 
1 x r = 

, . 0 otherwise. 
(1 1.7) 

to all pixels. The effects of these operations are illustrated in Figme 11 11. 
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Figure 11.11 Set operations on binary images. (a) A binary image. (b) Another binary 
image. (c) Complement of (a). (d) Intersection of (a) and (b). (e) Union of (a) and (b). 

Opening 

The opening of an image f by a structming element s is denoted! 0 s and is defined as an 
erosion followed by a dilation, i.c., 

!os=(j8s)Ells. (11.8) 

Figure 11.12 shows openings of the leiter A image using square structuring elements of 
various sizes. Opening by a 3 x 3 square eliminates the serifs that protrude from the 
boundary at the top and bottom of the character. Opening by a 5 x 5 square breaks the 
bridge of pixels that joins the two upright parts of the character. Opening by a 9 x 9 square 
has an even more dramatic effect, eradicating everything but the thicker of the two upright 
parts of the character. 

Opening is so called because it can open up a gap between objects that have been fused 
into a single region via a thin bridge of pixels. Sometimes, segmentation will produce a 
result of this kind, rather than an image containing distinct objects. In such cases, opening 
can be applied to the segmented image to separate the joined objects. Of course. erosion will 
also do this. but it will shrink regions as well. The advantage of opening is that it follows 
an erosion with a dilation. Any regions that have survived the erosion will be restored to 
their original size by the dilation. 

Opening can be visualised using the analogy introduced earlier, of sliding a structuring 
element around the boundary of an object. First, we slide the structuring element around 
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(a) (b) (c) 

Figure I 1.12 Openings of the Jetter A image by square structuring elements of various 
sizes. (a) 3 x 3. (b) 5 x 5. (c) 9 x 9. 

the inside of the boundary. The path traced by its origin defines a new boundary for the 
object. The new boundary is inside the old one, so the object shrinks. Depending on the 
shape of the structuring element, concave corners may be smoothed. Also, extruding parts 
of the original boundary into which the structuring element cannot fit will be removed. 
Next, we slide the structuring element around the outside of the new boundary. The path 
traced by the structuring element 's origin defines the final boundary for the object. The final 
boundary will usually be similar to the original boundary. There may be additional changes 
to the corners of the object as a result of this dilation stage, and any small extrusions that 
disappeared after the first stage will not be restored. However, the overall size of the object 
will be relatively unaffected by the operation. 

Another way of visual ising opening is to imagine that the structuring element is a kind 
of paintbrush applied to an entirely black output image. The input image is used to guide 
the application of white paint to the output image. We slide the paintbrush around inside an 
object in the input image and, everywhere it fits, a blob of white paint with the same size and 
shape as the structuring element is transferred to the output image. For example, suppose 
that we open an image of a rectangular object using a disc-shaped structuring element. The 
disc fits inside the object at most locations but it call1lot fill the corners of the rectangle-so 
the corresponding feature painted onto the output image has rounded corners, rather than 
sharp corners (Figure 11.13). 

boundary of 
rectangular region 

opened 
reg ion 

structuring 
element 

Figure I 1.1 3 Opening of a rectangle with a disc. 
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Opening is said to be idempotent. This means that, once an image has been opened, 
subsequent openings with the same structuring element have no further effect on that image. 
This property can be expressed more formally as follows: 

(/o s)os=fos. (11.9) 

Closing 

The closing of an image f by a structuring element s is denoted f 0 s and is defined as a 
dilation followed by an erosion, i.e., 

f o s = (/$s) 8s. (11.10) 

Note the use of s rather than s; strictly, we should dilate and erode by a rotated version of 
the structuring element. We generally need not concern ourselves with this subtle point, 
because most structuring elements are symmetrical with respect to 1800 rotation. 

Figure 11.14 shows the letter A image closed by square structuring elements of different 
sizes . It now becomes obvious why the operation is termed 'closing'. Its sole effect on this 
image is to fill the hole enclosed by the character. The degree of filling relates to the size of 
the structuring element, with larger structuring elements having a morc pronounced effect. 
Dilation alone will fill holes, but it enlarges regions as well. The advantage of closing is 
that it follows a dilation with an erosion. The dilation fills any holes enclosed by a region 
and the erosion restores the region to its original size. 

Ca) Cb) 

Figure 1 1.14 Closing of the letter A image by square structuring elements. (a) 5 x 5. 
(b)9x9. 

Closing can be visualised in much the same way as opening. We can consider changes to 
an object caused by first sliding the structuring element around the outside of its boundary 
and then sliding it around the inside of the new boundary generated by the first stage of 
the process. Alternatively, we can use the simpler analogy of the paintbrush once again. 
Here, we imagine a structuring element as a paintbrush moving around outside the object. 
The output image is, at first, completely covered in white paint. At all locations where the 
brush misses the object and remains wholly within the background of the input image, we 
transfer a blob of black paint to the output image. 
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Like opening, closing is idempotent; once an image has been closed, further attempts at 
closing with the same structuring element are fruitless. Formally, we can say that 

(f o s) o s=f o s. (Il.ll) 

Closing is the dual operation of opening, and vice versa. We may summarise this as 
follows: 

f os = (fc os)", 

fos = (fe os )". 

(1l.l2) 

(1l.l3) 

These equations arc merely a concise way of saying that closing of a binary image may 
be accomplished by taking the complement of that image, opening with the structuring 
element and taking the complement of the result. Similarly, opening may be accomplished 
by taking the complement of an image, closing and then taking the complement of the 
result. The practical implication of this is that we can carry out both operations using code 
that implements only one of the operations (if we also have code available to compute the 
complement of an image). 

Hit and miss transform 

Rather than simply probing the inside or the outside of objects in a binary image, it can 
be fruitful to probe both at the same time, to derive information on how objects are related 
to their surroundings. We can accomplish this using the hit and miss transform. This 
operation requires a matched pair of structuring elements, {SI , S2 }, that probe the inside and 
outside, respectively, of objects in the image. The transform may be written 

(11.14) 

A pixel belonging to an object is preserved by the hit and miss transform if and only if SI 

translated to that pixel fits inside the object Gild .12 translated to that pixel fits outside the 
object. (It is assumed that s, and "2 do not intersect, otherwise it would be impossible for 
both fits to occur simultaneously.) 

The hit and miss transform can be used for shape detection. Consider, for example, an 
image obtained by scanning a paper document. Figure 11.15(a) shows some text in a portion 
of this image. Now let us suppose that, for some reason, we wish to count occurrences of 
the character ' n'. We might think that erosion is an appropriate morphological technique for 
this purpose. Erosion marks locations where there is a perfect fit of a structuring element 
to regions of pixels in the image, so if the structuring element has the same shape as the 
character we are seeking, then erosion should mark the locations of that character. We 
should then be able to determine the number of occurrences by counting the number of 
non-zero pixels in the output image. Figure 11.15(b) shows the results of erosion by a 
structuring element with the shape of the character 'n'. Although the text contains only two 
instances ofthis character, four pixels have been marked by the erosion: two corresponding 
to "n' and a further two corresponding to 'h'. This occurs because instances of "n' and 'h' 
in the image are so similar that the structuring element fits inside both characters. 

The hit and miss transform solves the problem. To detect the character 'n', we define 
the pair of structuring elements shown in Figure 11.16. structuring element SI is the one 
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high 
noon 

Ca) Cb) 

Figure I 1.1 5 'False positives ' generated when erosion is used for shape detection. (a) 
Image of some text. Black and white pixels have values of I and 0, respectively. Cb) Result 
of erosion by a structuring element with the shape of the character 'n'. Four pixels have 
been marked. 

1 101 1 1 100 
I I I 1 I 1 1 I 0 
1 1 1 000 1 1 1 
110000011 
1 10000011 

51=110000011 
110000011 
110000011 
110000011 
110000011 
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I I I I 1 1 I 1 1 I I 
10010000111 
10000000011 
100011]0001 
100 1 1 I I I 001 
10011111001 

S2=10011 111001 
1 001 1 I 1 100 1 
I 001 I I I 100 I 
100 I I I I 1001 
I 00 1 I I ! 100 1 
1 00 I 1 I I 100 1 
1 I 1 1 I 1 I 1 III 

Figure I 1.1 6 A pair of structuring elements suitable for detecting the character 'n' in 
the image of Figure I 1.15 by a hit and miss transform. The origin of each structuring 
element is indicated with a bold font. s r probes inside the character and 52 probes its 
surroundings. 

that we used to erode the image in Figure 11.1 5. Although it fits inside the character ' n', it 
also fits inside 'h '. The structuring element 52 probes outside the character. It is designed 
specifically to fit the surroundings of an 'n'--or, equivalently, to miss an 'n'. It will not 
miss 'h', and this ensures that there are no false positives generated by the hit and miss 
transform. 

Java implementations 

The package com . pearsoneduc. ip. op contains classes BinaryOpenOp and 
BinaryCloseOp to perform opening and closing, respectively, on binary images. Both 
classes simply apply BinaryErodeOp and BinaryDilateOp, in the appropriate order. The 
filter () method ofBinaryOpenOp is shown in Listing 11.2. Note that BinaryCloseOp 
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follows the strict definition of closing and rotates the structuring element before performing 
the dilation and erosion. 

LISTING 11.2 filter 0 method of BinaryOpenOp. 

public Bufferedlmage filter (Buff eredlmage src, Bufferedlmage dest ) { 
BinaryErodeOp erodeOp = new BinaryErodeDp(structElement); 
BinaryDilateOp dilateOp : new BinaryDilateOp(structElement); 
if (dest =a null) 

dest = createCompatibleDestlmage(src , null); 
return dilateOp.filter(erodeOp.filter(src, null). dest); 

} 

The applications BinaryOpen and BinaryClose on the CD employ these two operators 
to carry out opening and closing. Both programs take the same command line arguments as 
the BinaryErode and BinaryDilate applications described earlier. Thus, the command 
to open an image f 00. pbm with a 3 x 3 square structuring element and write the result to 

a new file bar. pbm is 

java BinaryOpen foo.pbm bar.pbm sq3x3.bse 

where sq3x3 . bse is a file conta.ining the following text: 

# binary structuring element 
# width=3 
# height=3 
# xorigin=l 
# yorigin=l 
111 
111 
111 

The hit and miss transform is implemented by the program Hi tAndMiss, also on the CD. 
This program reads a binary image and a pair of structuring elements from files, performs 
the hit and miss transform and then outputs the results to a new file as a list of all the pixel 
coordinates where the inner structuring element fits the image and the outer structuring 
element misses the image. 

Finally, we must mention BinaryMorphologyTool. This application has a graphical 
user interface, allowing the user to view the input to and output from a morphological 
operation. The pixels of the structuring element are displayed and each value can be 
toggled between 0 and 1 by clicking on that pixel. A menu provides a choice of erosion, 
dilation, opening or closing of the input image by this structuring element. The output can 
be copied to the input, allowing a sequence of morphological operations to be carried out. 
Figure 11.17 shows BinaryMorphologyTool at work. 
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Figure I 1.17 BinaryMorphologyTool in action. 

11.5 Morphological filtering 

We can regard operations such as opening and closing as morphological filters. TI,ey act 
as filters of shape; opening with a disc, for example, smooths corners from the inside, and 
closing with a disc smooths corners from the outside. However, there is another sense in 
which opening and closing act as filters. We can regard them as operations that filter out 
from an image any features that are smaller in size than the structuring element. 

Let us consider a simple, hypothetical example. Suppose we are analysing the images 
generated by an industrial inspection system operating in a cookie factory. The system 
consists of a video camera mounted above a dark, moving conveyor belt, upon which 
lighter-coloured cookies lie. Images from the camera are fed to a computer, which performs 
segmentation using a simple thresholding technique. The aim is to measure cookie size 
and shape from the resulting binary images, but image noise and cookie crumbs on the 
conveyor belt lead to images such as that shown in Figure 11.l8(a). lfwe open this image 
with a 9 x 9 disc, we get the image shown in Figure 11.I8(b). The noise and other artefacts 
surrounding the cookie have been eliminated completely, and the irregularities on the edge 
of the cookie have been reduced to some degree. 

In this example. opening is filtering the binary image at a scale defined by the size of the 
structuring element. Only those portions of the image into which the structuring element 
can be fitted are passed by the filter; smaller structure is blocked, and does not appear in 
the output image. The blobs of noise, in particular, are eliminated, because the structuring 
element will not fit inside any of them. 

Now let us suppose that the manufacturer adds chocolate chips to its cookies. Being 
dark, these are not detected by thresholding, but they can be seen in the binary image as 
holes inside the cookie. Figure 11.l9(a) shows an example. The opening operation fails 
to remove these holes because it erodes (thereby enlarging the holes) before it dilates, as 
in Figure 11.I9(b). We remedy the problem by closing the opened image. Closing, which 
dilates and then erodes, fills the holes-as Figure 11.19(c) demonstrates. 
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(a) (b) 

Figure I 1. 18 Example of morphological filtering. (a) Input image, a cookie surrounded 
by crumbs. (b) Result of opening the cookie image. 

(a) (b) (e) 

Figure I 1. 19 Dealing with holes. (a) Input image. (b) Result of opening by a 9 x 9 disc. 
(c) Result of closing the opened image, again using a 9 x 9 disc. 

(a) (b) 

Figure I 1.20 Damage caused by the excessive size of a structuring element. (a) Image 
of Figure I 1.19(a) opened by a 17 x 17 disc. (b) Result of closing the opened image using 
the same structuring element. 
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I 1.6.1 

The size of the structuring element is very important here. If it is too large, the holes 
will prevent it from fitting into the object properly during the initial opening, with the result 
that the object is degraded by the operation. Figure 11.20(a) shows the result of opening 
the chocolate chip cookie image with a 17 x 17 disc; the noise blobs have disappeared, but 
the cookie has been damaged. Figure 11.20(b) shows that a subsequent closing operation 
with this structuring element cannot repair the damage. 

Greyscale morphology 

Erosion and dilation 

Morphological image processing is not restricted to binary images; morphological opera­
tions on greyscale images can also be defined. The definitions of these operations are similar 
to those for binary images, but they additionally take into account the extra dimension pro­
vided by pixel grey level. The image must be visualised as a landscape, with the height 
at any point representing the grey level at that point. The structuring element, sometimes 
referred to as a struchlring function, is also three-dimensionaL Structuring element pixels 
can take on any integer value------even a negative value, or zero. Because a value of zero is 
now significant, we must flag pixels that don 't participate in morphological operations by 
some other means. 

Greyscale erosion is a process of placing the structuring element beneath the grey level 
landscape of an image and pushing it up as far as it will go without any part of it ri sing 
above the landscape. The new value recorded at the origin of the structuring element is 
this maximum distance. Note that this distance will be negative if any of the structuring 
element's pixel values is greater than the grey level at the corresponding image pixel. The 
distance could also exceed the maximum of an 8-bit range if any of the structuring element 
pixels have negative values. Thus, we must either truncate distances to a 0-255 range or 
compute all the distances and then rescale to a 0-255 range. 

Another way of formulating greyscale erosion is as a calculation ofthe minimum differ­
ence between pixel grey level and the corresponding value from the structuring element over 
the domain defined by the structuring element. Denoting an image by f and a structuring 
element by s, the greyscale erosion f e s at a pixel (x, y) is 

(f e s)(x, y) = min[f(x + j, y + k) - s(j, k)] , 
j,k 

( 11.15) 

where j and k index the pixels of s. If s is a 3 x 3 structuring element with its centre as the 
origin, j and k will range from -I to + I; if it is a 5 x 5 structuring element with its centre 
as the origin, they will range from - 2 to + 2; and so on. 

For the special case of a flat structuring element, this calculation has the same effect as 
the minimum filter described in Chapter 7; in fact, if all the structuring element's pixels are 
set to 0, the calculation that is performed is exactly that of the minimum filter. Figure 11.21 
shows the dice image and its erosion by a 3 x 3 flat structuring element. 

Greyscale dilation is defined in a dual manner to erosion. Instead of pushing the structur­
ing element up by the maximum amount from beneath the grey level landscape ofthe image, 
we flip the structuring element upside down and find the minimum distance it needs to be 
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(a) (b) (c) 

Figure I 1.21 Greyscale erosion and dilation. (a) Input image. (b) Result of erosion by 
a 3 x 3 flat structuring element. (c) Result of dilation by the same structuring element. 

pushed up to be above the landscape. It can be shown that this is equivalent to computing 

(f ffi s)(x, y) = max[f(x - j , y - k) + sU, k)], 
j,k 

(11.16) 

where j and k vary as before. For a fiat structuring element, this is equivalent to the 
maximum filter discussed in Chapter 7. Figure 11.21 shows an example of dilation by a flat 
structuring element. 

Opening and closing 

The definitions of opening and closing for greyscale images are essentially the same as those 
for binary images. As in the binary case, opening and closing with an appropriate structuring 

(a) \ 
(b) 

(e) 

, 
\/ \ 

Figure I 1.22 Geometric interpretation of greyscale opening and closing. (a) Grey level 
topography, shown in cross-section. (b) Effect of opening with a sphere. (b) Effect of 
dosing with a sphere. 
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element can have a smoothing effect on the image; however, now it is the topography of 
the grey level landscape that is smoothed, rather than the contours of shapes in a 'flat' 
binary image. The three-dimensional analogue of a disc-shaped binary structuring element 
is spherical in shape. Opening an image with this 3D structuring element can be visualised 
as rolling the sphere across the underside of the grey level landscape. The sphere cannot 
be pushed up inside narrow peaks in thi s landscape, so opening tends to smooth away the 
small-scale bright structure in an image (Figure 11.22(b». Closing can be visualised in 
a similar manner, only now we roll the sphere over the top of the landscape. The sphere 
cannot be pushed down into narrow valleys, so closing tends to smooth away the small-scale 
dark structure in an image (Figure 11.22( c». 

Figure 11.23 shows examples of opening and closing with a 5 x 5 flat structuring element. 
Greyscale opening and greyscale erosion differ in a manner similar to the corresponding 
binary operations. Erosion wi ll shrink bright features but it will also enlarge dark features; 
opening, on the other hand, will remove small, bright structure without enlarging dark 
features. Similar considerations apply to dilation and closing. 

Figure I 1.23 Examples of greyscale opening and closing. (a) Input image. (b) Result of 
opening by a 5 x 5 flat structuring element. (c) Result of closing by the same structuring 
element. 

Other compound operations 

An iteration of opening and closing on a greyscale image is termed morphological smooth­
ing. This operation has the effect of removing small-scale bright and dark structure from an 
image. The non-linear smoothing effect resembles that produced by certain extreme forms 
of the median filter. Figure I 1.24 gives an example. 

Another compound operation is the top-hat transform, defined for an image f and a 
structuring element s as 

g = f - (f 0 s). (I1.l7) 

Recall that f a s removes small-scale bright structure from an image. It follows that sub­
tracting f a S from f leaves us with this small-scale bright structure. The top-hat transform 
therefore acts as a detector of peaks and ridges of the grey level surface. Figure 11.25 shows 
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Figure I 1.24 Result of morphological smoothing with a 5 x 5 flat structuring element. 
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Figure I 1.25 The top-hat transform. (a) Input image. (b) Result of opening by a 3 x 3 
flat structuring element. (c) Result of subtracting (b) from (a). inverted for clarity. 

an example. The dual of the top-hat transform is 

g=Uos)-f (11.18) 

This acts as detector of pits and valleys in the grey level surface. 

Java implementations of greyscale operations 

GreyscaJe morphological operations are supported in the com. pearsoneduc. ip. op pack­
age by classes equivalentto those implemented for binary operations. GreyStructElement 
represents the structuring elements applied to greyscale images. Instances of this class 
behave in almost exactly the same way as binary structuring elements. The main difference 
is that there is no restriction on the values of structuring element pixels. Also, the format 
for structuring element data written to or read from files is slightly different, with pixel 
values being separated by spaces. Instead offi ts () and hi ts (), GreyStructElement 
has below () and above (). The former returns the maximum distance that the structuring 
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element can be pushed up whilst remaining below the image; the latter returns the minimum 
distance that the structuring element must be pushed up to be above the image. 

Erosion and dilation are supported by the classes GreyErodeOp and GreyOilateOp. 
These operate very much like their binary counterparts. The main difference is the need to 
deal with results that lie outside the 0- 255 range required for 8-bit images. Both classes 
can truncate out-of-range values or compute the results and then rescale them so that they 
occupy a 0-255 range. The required behaviour is indicated by a Boolean instance variable, 
the value of which can be set when a GreyErodeOp or GreyOilateOp is created. For 
example, the operators defined by 

GreyStructElement element = new GreyStructElement(5, 5); 

GreyErodeOp op1 
GreyErodeOp op2 

new GreyErodeOp(element, true); 
new GreyErodeOp(element, false); 

differ in that opt will rescale output values to lie in the required range, whereas op2 will 
truncate output values. The Boolean parameter can be omitted if desired. The default 
behaviour in this case is to truncate output values. 

Opening and closing are supported by the classes GreyOpenOp and GreyCloseOp. As 
in the binary case, these merely apply the erosion and dilation operators in the appropriate 
order. 

Four applications that use these classes are provided on the CD. They are: GreyErode, 
GreyDilate, GreyOpen and GreyClose. Each behaves in a similar maImer to the corre­
sponding applications written for binary images. Each truncates output values to a 0- 255 
range by default. Rescaling to a 0-255 range is requested by supplying the word ' rescale' 
as a fourth command line parameter. 

I 1.7 Further reading 

Dougherty [12] discusses morphological operations on both binary and greyscale images 
in considerable detail. Lyon [29] provides some examples of morphological operations on 
colour images. Parker [36] gives some practical examples of applications, and some code. 
Parker's book also contains a detailed discussion of skeletonisation. This is a ' thinning' 
process whereby we remove pixels that are not essential for communicating the shape of a 
region of pixels. Pitas [37] also discusses skeletonisation and presents an implementation 
in C. 

I 1.8 Exercises 

I. Calculate the erosion, dilation, opening and closing of the image below by a 3 x 3 square 
structuring element. 
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2. A bank is developing a machine that can recognise the handwritten signatures of its 
customers. Binary images of the signatures are produced by scanning a document and 
thresholding the scanned image. In these binary images, pen strokes should appear as 
chains of connected pixels; however, image quality is often so poor that these chains are 
broken in many places. 

Suggest a technique that will join up the broken pen strokes in these binary images. 
Draw diagrams to illustrate the different stages of the technique. 

3. Why can't we test for existence of a particular shape by erosion with a single structuring 
element having a border of zeros, rather than using the more complicated hit and miss 
transform? 

4. Using the classes described in this chapter. write a Java program to perform the top-hat 
transform. 
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It is important that we store and transport images efficiently, given their increas­
ing importance in the network-oriented, multimedia computing environments that 'we 
use today. Image compression techniques make efficient storage and transmission 
possible by reducing the amount of data needed to represent an image. These tech­
niques are either lossless, meaning that they exploit redundancy already present in 
the image, or lossy, meaning that the image is modified in subtle ways to create re­
dundancy, which is then removed to achieve compression. In this chapter, we look at 
examples of both types of compression technique. 

We start by reviewing the basic concepts and considering how the peiformance of 
compression techniques can be measured. We then move on to consider four lossless 
techniques that achieve compression by exploiting different kinds of redundancy in the 
image. This is followed by discussion of two different lossy techniques: JPEG com­
pression and fractal compression. The chapter concludes with the brief description 
of the MPEG standard for the compression of video data. 

12.1 Introduction 

The storage requirements for images can be excessive, particularly if true colour and a high 
perceived image quality are desired. Suppose, for example, that we wish to create a digital 
family photo album; the raw data for a hundred pictures might occupy a gigabyte or more of 
disk space, if we require images comparable in quality to conventional photographic prints. 
Storage problems are particularly acute in remote sensing applications; the scenes imaged 
by Earth-orbiting satellites typically have widths and heights of several thousand pixels, 
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and there may be several bands representing the different wavelengths in which images are 
acquired. The raw data for a single scene therefore requires several hundred megabytes 
of storage space. Video presents perhaps the most serious storage problems of all. A one 
minute sequence of full colour video data occupies over 1.5 gigabytes when in digital form. 

Another issue is image communication. The prodigious size of many images leads to 
long, costly transmission times. Cost is not the only reason for speeding up transmission, 
however. The emergence of the World-Wide Web has resulted in a huge increase in the 
exchange of inJages via the Internet. Rapid transfer of these data is essential if the Web is 
to remain usable as an interactive information-gathering tooL 

[mage compression addresses the problem of reducing the amount of data required to 
represent a digital image, so that it can be stored or transmitted more efficiently. We must 
make a clear distinction between data and if~rormatiofl. Data are the means by which 
information is conveyed. Various amounts of data can be used to convey the same amount 
of information. Consider, for example, Figure 12.1. This shows ways of representing the 
number five using different amounts of data. The quantity of data used varies by four orders 
of magnitude. Clearly, the binary integer representation is vastly more efficient than the 
pictorial representation. 

• • 
• "five" 

• • 

"5" 1 o 1 

Figure 12.1 Four different representations of the same information. From left to right 
and top to bottom: a picture (10 I ,632 bits); a word, spelled in English using the ASCII 
character set (32 bits); a single ASCII digit (8 bits); a binary integer (3 bits). 

Ifmore data are used than is strictly necessary, then we say that there is redundancy in the 
dataset. Lossless compression techniques are designed to remove this redundancy when 
data are stored or transmitted and then replace it when the image is reconstructed from 
those data. The reconstructed image is identical to the original, i.e., all of the information 
originally present in the image has been preserved by compression. 

Many ' real ' images contain only a small amount of redundant data. Lossless techniques 
give only moderate compression of such images. Higher compression is possible using lossy 
compression techniques, which discard some of the information present in the image. This 
is not as drastic as it might seem. An image can be changed in many ways that are almost 
undetectable by the human visual system. If these changes lead to highly redundant data, 
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then the image can be greatly compressed. The reconstructed image will not be identical 
to the original image, although the difference need not be clearly visible to the human eye. 

12.2 Redundancy 

Three basic types of redundancy can be identified in a single image. Coding redundancy 
arises when the representation chosen for the pixel values of an image is not the most efficient 
that is possible. Remember that the value at a pixel in a typical greyscale image relates to 
the intensity of light detected by the camera that acquired the image. We cannot represent 
the actual intensity measurements; instead, we quantise the data and represent intensities by 
a discrete set of what, in the language of information theory, are termed codewords. Image 
quantisation uses a standard binary coding scheme in which the codewords are the set of 
values that can be represented with a fixed number of bits (typically eight). Furthermore, 
the codewords are ordered in the same way as the intensities that they represent; thus, the bit 
pattern 00000000, corresponding to the value 0, represents the darkest points in an image 
and the bit pattern 11111111 , corresponding to the value 255, represents the brightest points. 

An 8-bit coding scheme has the capacity to represent 256 distinct levels of intensity in 
an image. But what ifthere are only 16 different grey levels in a particular image? Such an 
image exhibits coding redundancy because it could, in theory, be represented using a 4-bit 
coding scheme. (In fact, as we shall see shortly, coding redundancy can also arise due to 
the use of fixed-length codewords.) 

A second type of redundancy often present in images is interpixel redundancy. This 
arises because the values of a pixel and its immediate neighbours are often strongly cor­
related. This means that the value at a pixel can be predicted with a reasonable degree of 
accuracy from values of its neighbours. Consequently, the amount of information conveyed 
by an individual pixel is relatively small, and the amount of data that is needed to represent 
that pixel is correspondingly small. 

The third type of redundancy is psychovisual redundancy. This arises because not all 
the information present in an image is of equal importance to the human visual system. 
For example, there are upper limits on the number of quantisation levels that can be easily 
distinguished by eye, and on the spatial frequencies that can be detected by the eye. 

When video data are available, there is a fourth type of redundancy: interframe redun­
dancy. This is the temporal equivalent of interpixel redundancy. Video frame rates are 
sufficiently high that the change in a pixel's value from frame to frame is typically very 
small over the majority of the frame. Data compression can be achieved by encoding the 
relatively small number of changes that occur from frame to frame, rather than each frame 
in its entirety. 

12.3 Performance characterisation 

How do we characterise the performance of a compression algorithm? The obvious answer 
is to measure the degree to \vhich it has compressed the image data. There are various ways 
of expressing the amount of compression that has been achieved. One way is to compute 
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the compression ratio, defined as 

n 
C= - , 

nc 
(12.1) 

where 11 is the number of information-carrying units used in the uncompressed dataset and 
nc is the number of units in the compressed dataset. The same units should be used for n 
and nc; bits or bytes are typically used. Larger values of C indicate better compression. 

A less obvious performance measure is the time required for compression or decom­
pression of the data. In certain applications where time is at a premium, we might favour 
quicker algorithms over algorithms that achieve a better compression ratio. The symme­
try of the technique may also be important. A symmetrical technique will require similar 
amounts of time to compress and decompress data. This is what we desire in applications 
where images are compressed as frequently as they are decompressed. Some compression 
techniques are highly asymmetrical in time, taking much longer to compress images than 
to decompress them. (This is part of the price paid for the very high compression ratios 
that these techniques can achieve.) This asymmetry is not a problem if compression takes 
place infrequently relative to decompression. 

Consider, for example, the storage of images from a multimedia encyclopedia on a 
CD-ROM. In this application it is important that high compression ratios are achieved, 
to maximise the number of images that can be stored in the fixed space available on the 
CD-ROM. It is also important that decompression is quick, so that the interactive feel of 
the encyclopedia is preserved. Provided that these requirements are satisfied, the technique 
can be highly asymmetrical, with compression taking orders of magnitude longer than 
decompression. This is because the set of images from the encyclopedia are compressed 
once only, when the CD-ROM is mastered. In a different application, such as the storage of 
images acquired at regular intervals from a security camera, this technique might be totally 
inappropriate. 

When lossy techniques are employed, the decompressed image will not be identical to 
the original image. In such cases, we can define fidelity criteria that measure the difference 
between the decompressed and original images. An example of an objective criterion is the 
root-mean-square (RMS) error, defined for an M x N image by 

[ 

I N- IM- I ]1 /2 
£ = M N ?; {; [j(x, y) - fIx , y )f (12.2) 

where f and I are the original and decompressed images, respectively. Smaller values of 
RMS error indicate that the decompressed image is closer to the original. Note, however, 
that this measure does not necessarily correlate with how we perceive the image. It does 
not follow that one technique is better than another just because it results in a lower RMS 
error; it may be the case that a decompressed image from the technique with the higher 
error is closer, visually, to the original image. For this reason, subjective fidelity measures 
based on human perception are sometimes used to characterise the perfonnance of lossy 
techniques. 
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12.4 

12.4.1 

Lossless compression techniques 

Delta compression 

Delta compression (also known as differential coding) is a very simple. lossless technique 
in which we recode an image in terms of the difference in grey level between each pixel 
and the previous pixel in the row. The first pixel, of course, must be represented as an 
absolute value, but subsequent values can be represented as differences, or 'deltas'. Most 
of these differences will be very small, because gradual changes in grey level are more 
frequent than sudden changes in the majority of images. These small differences can be 
coded using fewer bits. Thus, delta compression exploits interpixel redundancy to create 
coding redundancy, which we then remove to achieve compression. 

Figure 12.2 shows an image along with a histogram of the grey level differences for this 
image. Note that the frequency axis of this histogram is logarithmic. Large differences 
are relatively infrequent; differences close to zero are orders of magnitude more common. 
Reasonable compression of this image should therefore be possible by encoding grey level 
differences. 
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Figure 12.2 Suitability of an image for delta compression. (a) An image. (b) Histogram 
of grey level differences for adjacent pixels in this image. 

We can compress the image of Figure 12.2(a) by using four bits to code differences in 
the range -7 to +7. Four bits give us 24 = 16 codewords, but there are only 15 values 
in the range. The remaining codeword can be used to flag pixels for which the grey level 
difference exceeds the range. The values of these pixels are output using the full eight 
bits. Using this scheme, the storage requirements for a completely homogenous image 
would be almost halved by delta compression. For the image of Figure 12.2(a), the actual 
compression ratio achieved using the technique is 1.52. 

You can experiment with delta compression yourself by running the Del taEncoder ap­
plication on the CD. This reads an image from a named file and performs delta compression 
of it. If a second filename is supplied on the command line, the compressed datastream is 
written to this file; othcnvise, it is written to memory and the compression ratio achieved 
by the technique is calculated. 
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Run length encoding 

The technique of run length encoding (RLE) exploits the high interpixel redundancy that 
exists in relatively simple images. In RLE, we look for grey levels that repeat along each 
row of the image. A 'run' of consecutive pixels whose grey levels are identical is replaced 
with two values: the length of the run and the grey level of all pixels in the run. Hence, the 
sequence {50, 50, 50, 50} becomes {4, 50}. RLE can be applied on a row-by-row basis, or 
we can consider the image to be a one-dimensional datastream in which the last pixel in a 
row is adjacent to the first pixel in the next row. This can lead to slightly higher compression 
ratios if the left and right-hand sides of the image are similar. 

For the special case of binary images, we don't need to record the value of a run, unless 
it is the first run of the row (or, if we regard the image as one-dimensional, the first run of 
the image). This is because there are only two values possible for a pixel in a binary image. 
If the first run has one of these values, the second run implicitly has the other value, the 
third run implicitly has the same value as the first, and so on. 

Note that, if the run is of length I, RLE replaces one value with a pair of values. It is 
therefore possible for RLE to increase the size ofthe dataset in images where runs oflength 
I are numerous. This might be the case in noisy or highly textured images. For this reason, 
RLE is most useful for the compression of binary images or very simple greyscale images. 

The main practical application ofRLE is the compression of binary images of documents 
prior to transmission by fax machine. Here, the algorithm is an extension of RLE into two 
dimensions, known as READ (relative element address designate) coding. 

You can experiment with run length encoding yourself by running the 
RunLengthEncoder application on the CD. This reads an image from a named fi le 
and perfonns run length encoding of it. If a second filename is supplied on the command 
line, the compressed datastream is written to this file; otherwise, it is written to memory 
and the compression ratio achieved by the technique is calculated. 

Statistical coding 

Statistical coding techniques remove the coding redundancy in an image. This redundancy 
exists because fixed-length (typically 8-bit) codewords are used to represent pixel values. 
Infonnation theory tells us that the amount of infonnation conveyed by a codeword relates 
to its probability of occurrence. Codewords that occur rarely convey more infonnation than 
codewords that occur frequently in the data. An optimal coding scheme will use more bits 
for the rare codewords and fewer bits for the frequent codewords. 

Basic concepts 

To quantify how effectively an image is coded by a fixed-length scheme, we can compute 
its entropy. For an image coded using b bits, this is given by 

2b_l 

H = - L Pi log2 Pi, (12.3) 
i=O 
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where p(i) is the probability of occurrence for a grey level i. Probability can be estimated 
from the histogram of an image using 

hi 
p, = -. (12.4) 

11 

where h is the frequency of occurrence of grey level i and 11 is the total number of pixels in 
the image. Figure 12.3 shows two very different images and gives their entropies, calculated 
using the program Entropy on the CD. The synthetic image contains just a few distinct 
grey levels, and the background grey level is much more numerous than the other grey 
levels. Clearly, this image is not coded effectively by the standard 8-bit binary scheme. 
This observation is supported by the image's entropy, which is very much lower than that 
of the real image. 

(a) (b) 

Figure 12.3 Two images and their entropies. (a) A synthetic image, with an entropy of 
1.1. (b) A real image, with an entropy of 5.4. 

The units of entropy are 'bits per pixel'; in fact, the entropy of an image is an estimate 
of the average number of bits per pixel that are required to code that image. If more bits 
are used, there is coding redundancy. If b is the smallest number of bits needed to generate 
the number of quantisation levels observed in an image, then the information redundancy 
of that image is defined as 

/' =b- H. (12.5) 

We can also write down an expression for the compression ratio that can be achieved by the 
removal of all coding redundancy, This ratio is 

b 
Cmax = H' (12.6) 

Note that thi s is not, in general, the maximum compression ratio achievable by lossless 
techniques, because it does not take into accOlmt interpixel redundancy, 

A statistical coding technique must analyse an image in order to estimate the probability 
of occurrence for each value in that image, This is done simply by computing the histogram 
and normalising, The task is then to construct a set of codewords to represent each pixel 
value. These codewords must have the following properties: 
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1. Different codewords must have different lengths (numbers of bits). 

2. Codewords for infrequent values must be longer than codewords for frequently occurring 
values. 

3. It must not be possible to mistake a particular sequence of concatenated codewords for 
any other sequence. 

The performance of a coding scheme can be assessed by computing the average bit length 
of its codewords. This is given by 

2b_ l 

T = LI;Pi. (12.7) 
;= 0 

where Ii is the length of the codeword used to represent the grey level i. The upper limit for 
[is b, the number of bits used in the fixed-length codewords representing image intensities. 
The lower limit for T is the entropy. 

Huffman coding 

Huffman coding is simply a particular way of choosing the codewords, such that T is as 
close as possible to the entropy of the image. We can illustrate how the technique works 
with a simple example. Figure 12.4 shows an image coded with 3 bits per pixel and its 
histogram. Grey levels range from 0 to 7. The probabilities associated with each of these 
grey levels are listed in Table 12.1. We start by ranking pixel values in decreasing order of 
their probability. We then pair the two values with the lowest probabilities, labelling one of 
them with 0 and the other with I. Their probabilities are summed to give the probability 
of either value from the pair occurring in the image. We then identify the next two lowest 
probabilities from the current set of individual values or paired values. These are then 
paired, with one member of the pair labelled 0 and the other I, and so on. The process 
continues, building up a tree-like structure of paired values (Figure 12.5). 

100000 .... -_-_-_~-_-_~~ 

10000 
~ 
u c 
w , 
cr 
~ 

1000 

100 I I I 
0 2 3 4 5 6 7 

grey level 

(a) (b) 

Figure 12.4 (a) Image to be compressed by Huffman coding. (b) Histogram of this 
image. 
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12.4.4 

Table 12.1 Codewords produced by Huffman coding of the image in figure 12.4(a). 

grey level p codeword I Ip 

0 0.000 111111 6 0.000 

0.0 12 11110 5 0.060 

2 0.071 10 2 0.142 

3 0.019 1101 4 0.076 

4 0.853 0 1 0.853 

5 0.023 1100 4 0.092 

6 0.019 1110 4 0.076 

7 0.003 111110 6 0.01 8 

1.317 

4 0.853 
___ 0 

2 0.071 
__ 0 

5 0.023 --
__ 0 

0.042 0 

3 0.019 --
0.076 

6 0.019 --- -- o 

0.012 0 0.034 

7 0.003 0 
' 0.015 

0.003 

a 0.000 

Figure 12.5 Huffman tree for the image in Figure 12.4. 

Following this tree from each leaf node to the root gives a sequence of bits that, when 
reversed, representthe codeword for the value at the leaf node. Table 12.1 lists the codewords 
determined by traversing the tree in Figure 12.5. Also listed here are the lengths of each 
codeword, and the product of codeword length and probability. Summing this column gives 
us an average bit length of 1.317. Since the original image was coded using 3 bits, the 
compression ratio achieved by Huffman coding is 3/1.317 = 2.28. 

Dictionary-based coding 

Statistical coding techniques such as Huffman coding represent individual symbols in a 
datastream using codewords of variable length. Dictionary-based compression adopts a 
completely different approach, encoding variable-length strings of symbols as single code­
words. Compression occurs because these codewords are shorter than the strings of symbols 
that they replace. 

Following Nelson and Gailly [34), we can illustrate how dictionary-based compression 
works using the example of English text and a conventional printed dictionary. Let us 
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suppose that we wish to compress the phrase 

"Image compression is imponam and fun" 

using the dictionary. One way of doing this is to encode a word using the nwnber of the 
dictionary page on which it occurs, along with its position on that page. If we use the 
seventh edition of Chambers English Dictionary, the phrase above becomes the string of 
codes 

710-14,293-13,756-18,7 15-37,48-26,573-16. 

The first number of each pair is the page number and the second is the position of the word 
on that page. Assuming that one byte is the fundamental unit of storage, page nwnbers can 
be stored in two bytes and word positions in one byte; hence, the total storage required for 
the string of codes is 18 bytes. This compares with 38 bytes required for storage of the 
original phrase. 

Although this simple example illustrates the basic concept, it uses an existing dictionary 
to perform the compression. With an arbitrary image, no such dictionary of'phrases' exists, 
so we must construct it from the image data. 

Most dictionary-based techniques have their origins in work by Ziv and Lempel in the late 
1970s [53, 54]. These researchers developed two techniques that have come to be known 
as LZ77 and LZ78. The deftation algorithm used by Zip archiving tools on the PC platform 
and by the gzip compression program on Unix systems is based on LZ77. A variant of 
LZ78 known as the LZW algorithm forms the basis of compression techniques used by 
modems and in the GIF image format. The LZW technique is patented, and attempts by 
the patent owner Unisys to collect licence fees led directly to the development of the PNG 
image format, with patent-free compression based on LZ77. We shall focus here on LZ77 
because it features in the PNG format and because there is direct support for this type of 
compression in Java, via the classes of the java . util. zip package. Readers interested 
in LZ78 and its derivatives should consult other texts [34, 37]. 

Sliding window compression 

LZ77 is what is known as a sliding window compression technique. The dictionary is a 
window of previously seen data that slides along the datastream. This window is usually 
thousands or tens of thousands of bytes in size. (In the deftation algorithm used by Zip tools, 
gzip, the PNG format, etc, it is 32 kilobytes long.) at the leading end of the window is a 
look-ahead buffer, typically a few hundred bytes long. The algorithm tries to match strings 
of bytes in the look-ahead buffer with strings of bytes in the dictionary. When a match is 
found, the algorithm replaces the string of bytes with the distance to the match (which can 
be no larger than the size ofthe window) and its length. In the deflation algorithm based on 
LZ77, strings ofunreplaced bytes and the match lengths are Huffman coded using one tree 
and the match distances are Huffinan coded using another. Compressed data are output in 
blocks, and the algorithm can use different pairs of Huffman trees for each block ifit deems 
that this would be beneficial. 

Sliding window compression exploits recency in the input data. When a string of bytes 
has been seen recently enough to still be within the window, it can be compressed by the 
algorithm; however, if it was seen earlier in the datastream, it will not be replaced by much 
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shorter tokens. This limits the effectiveness of the technique in image compression. We 
can envisage a scenario in which a sequence of pixel values near the top of an image is 
duplicated near the bottom of the image. If the image is large compared with the size of 
the window, the sequence of pixel values will no longer be in the dictionary when it is 
encountered for the second time. 

Another problem when using this technique for image compression is that it seeks exact 
matches between strings in the look-ahead buffer and sttings in the dictionary. Unfortu­
nately, in many images, sequences of pixels that appear to be identical to the human eye 
may differ enough to prevent compression. For example, suppose that an image contain the 
hvo nearby sequences 

100,101,100,99,101 .. . 
101,101,99,100,100 .. . 

The second sequence would look the same as the first but it would not be recognised as a 
duplicate by a dictionary-based algorithm. 

Dictionary-based compression in Java 

Java provides a range of classes in the java. util. zip package to support compression 
via the deflation algorithm described above. Full details can be found in reference books 
describing Java version 1.1 onwards [21, for example]. We shall restrict ourselves here to 
showing some Java code that can be used to experiment with dictionary-based compression 
of images. 

The java. util. zip provides a class called DeflaterOutputStream that can be used 
to write data to a stream in compressed form. Compressing an array of bytes named data 
can be as simple as 

DeflaterOutputStream output = 

new DeflaterOutputStream(new FileOutputStream(1!compressed.dat ll
)); 

output.write(data, 0, data.length); 

A DeflaterOutputStream uses an internal Deflater object as the compression engine. 
Ifmore control over compression is required, a custom Deflater can be created and used: 

Deflater deflater = new Deflater(); 
1/ change deflater parameters here ... 
DeflaterOutputStream output = 

new DeflaterOutputStream(new FileOutputStream (II compressed. datU) , 
deflater); 

output.write(data, 0, data.length); 

When the Deflater has done its job, we can query it to find out how many bytes of 
compressed data were generated and then compute a compression ratio: 

int n ~ deflater.getTotalOut(); 
System.out.println(n + II bytes written!!); 
float ratio = (float) data. length I n; 
System.out.println(IICompression ratio = II + ratio); 
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Similar code is used in the program DeflateTest on the CD. This program reads an 
8-bit greyscale image from a file and gains access to the byte array used to store pixel 
values. The bytes are compressed using a Deflater that has been configured with a 
compression level specified by the user (or with the default compression level if none 
has been specified). Valid compression levels range from 1 (fast, low compression) to 9 
(slow, high compression). Since we are interested only in the compression ratio and not in 
keeping the data, DeflateTest uses the memory-based ByteArrayOutputStream as the 
destination for the compressed data. This is neater and more efficient than outputting to a 
temporary file. 

Note that the Deflater class also allows different compression strategies to be selected. 
One of these, specified by the constant Deflater. HUFFMAN_ONLY, disables the dictionary 
and uses Huffman coding only to achieve compression. We can therefore use a Deflater 
to create a Huffman coding program and compare its results with those from DeflateTest. 
HuffmanTest on the CD is such a program. 

Comparison of techniques 

Table 12.2 compares the compression ratios achieved when the lossless techniques de­
scribed in this chapter are applied to the two images of Figure 12.3. The programs used 
were those described previously: Del taEncoder, RunLengthEncoder, HuffmanTest and 
DeflateTest. We can see that delta compression is a fairly consistent perfonner, achiev­
ing a compression ratio close to the theoretical maximum of 2 for the synthetic image and 
a slightly lower ratio for the real image. The other techniques perform very much better 
on the synthetic image than on the real image. This is precisely what we expect, given that 
there is considerable coding redundancy and interpixel redundancy in the synthetic image 
and much less in the real image. 

Table 12.2 Compression ratios achieved by various lossless compression techniques. 
The synthetic image is the image shown in Figure 12.3(a); the real image is the image 
shown in Figure 12.3(b). 

image delta RLE Huffman deHate 

synthetic 1.97 60.24 6.14 84.89 

real 1.80 Ll5 1.61 2.57 

Run length encoding gives excellent compression of the synthetic image; the technique 
is ideal for this type of image, in which there are few grey levels and, therefore, relatively 
long runs of the same grey level. However, RLE is bettered by deflation, which combines 
sliding window compression with Huffman coding. RLE is a poor performer on the real 
image, relative to the other techniques. (Actually, this is a good result for RLE; it is common 
for the technique to increase the amount of storage required for real images.) The most 
effective compression technique for the real image is deft.ation, but the compression ratio 
is thirty times smaller than that achieved on the synthetic image. 
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12.5 Lossy compression techniques 

12.5.1 

Lossy compression techniques rely on the fact that the human visual system is insensitive 
to the loss of certain kinds of information. Consider, for example, one of the sequences of 
pixel values from the hypothetical example discussed earlier: 

100,101,100,99,101 ... 

This is similar to the sequence 

100,100,100,100,100 .. 

allowing for a random fluctuation of ± I in each value. A fluctuation this small will be 
imperceptible, so we could replace the first sequence by the second without affecting the 
appearance of the image to any significant degree. The advantage of this is that the second 
sequence is highly redundant. The compression techniques described in Section 12.4 could 
be used to store this sequence very compactly. 

JPEG compression 

The Joint Photographic Experts Group (JPEG) have specified a lossy algorithm based on 
transform coding. Techniques of this kind create a frequency-based representation of the 
image and discard some of the high frequencies to create redundancy and hence achieve 
compression. The basis for the JPEG algorithm is the discrete cosine transform (DCT). 
This is rather like a Fourier transform; the main difference is that it is performed on real , 
rather than complex, data, and it yields a set of real-valued coefficients. The OCT is 
preferred to the Fourier transform for transform coding because it packs a given amount of 
information into fewer coefficients [20]. 

Although we could, in theory, perform a transform on an entire image, there are two 
disadvantage to this. First, it is demanding computationally. Second, discarding high 
frequencies from the spectrum generated by the transform will have the effect of a low pass 
filter, blurring all parts of the image to the same degree (see Chapter 8). This runs counter 
to our aim of achieving high compression ratios whilst minimising perceptible information 
loss. The solution is to perform the transform on small areas of the image. Compression 
techniques that operate on blocks of pixels in this manner are often described as block coding 
techniques. Block coding allows compression to be adaptive. In areas where information 
loss can be tolerated, we can discard many of the high frequency components; in other areas 
where the loss of these components would be very noticeable, we can leave the transform 
coefficients unaltered. 

The transform of a block of pixels may suffer from discontinuity effects of the kind 
discussed in Chapter 8, resulting in the presence of blocking artefacts in the image after 
it has been decompressed. This is a further reason to prefer the OCT to the DFT; the 
symmetry of the DCT is such that it is inherently less susceptible to discontinuity effects. 

The stages of JPEG compression for an 8-bit greyscale image are outlined in Algo­
rithm 12.1. The image is broken up into non-overlapping 8 x 8 blocks, which are processed 
in left to right, top to bottom order. Padding can be done if the image dimensions are not 
multiples of eight; the padding is discarded on decompression. The DCT of each block 
is computed, generating an 8 x 8 block of coefficients. Since transforms like the DCT 
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ALGORITHM 12.1 JPEG compression of an 8-bit greyscale image. 

Split image up into 8 x 8 blocks of pixels 
for all blocks of pixels do 

Shift pixel values by subtracting 128 
Compute a discrete cosine transform (DCT) of the block 
Quantise the DCT coefficients 
Arrange coefficients into a one-dimensional sequence 
Delta encode the first (zero frequency) coefficient 
Compress zero-valued coefficients by run length encoding 
Perfonn Huffinan coding of the coefficients 
Output coded coefficients for the block 

end for 

produce real numbers, a block of coefficients would normally occupy much more space 
than the corresponding block of pixels. To avoid this problem, we quantise the coefficients. 
A particular DCT coefficient T (II, v) is quanti sed by calculating 

T (II, v) = round , 
, [T (II, V) ] 

Q(u, v) 
(12.8) 

where u and v are spatial frequency parameters each ranging from 0 to 7, Q(II, v) is a 
value from a quantisation table and 'round' denotes rounding to the nearest integer. The 
values in the quantisation table tend to increase as Ii and u increase. This has the effect 
of giving greater precision to the lower frequency components of the transform, for which 
accuracy is more important, and reduced precision to the higher frequency components. 
In fact, this approach implicitly discards components above a certain frequency by setting 
their coefficients to zero. 

A typical quantisation table is shown in Figure 12.6. The values in this table can be 
scaled to produce other quantisation tables. Scaling up has the effect of increasing the 
number of coefficients in a given block that are set to zero by Equation 12.8; scaling 
down has the opposite effect. This gives us a way of controlling the compression ratio. 

16 11 10 16 24 40 51 61 
12 12 14 19 26 58 60 55 
14 13 16 24 40 57 69 56 
14 17 22 29 51 87 80 62 
18 22 37 56 68 109 103 77 
24 35 55 64 81 104 113 92 
49 64 78 87 103 121 120 101 
72 92 95 98 11 2 100 103 99 

Figure 12.6 Example of a JPEG quantisation table. 
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Most JPEG implementations allow the user to specify a quality parameter that is used to 
generate an appropriate quantisation table. A high value for this quality parameter produces 
a quantisation table that sets relatively few coefficients to zero, resulting in a relatively 
modest compression ratio; a low value for the quality parameter produces a quantisation 
table that sets many coefficients to zero, resulting in a much higber compression ratio. 

Note that the effect of guanlisation using a particular table depends on image content. 
In places where grey level is varying slowly and smoothly, an 8 x 8 block of pixels will be 
relatively homogeneous and many of the DCT coefficients will be small enough to be set 
to zero by quantisation. At edges, where grey level is varying much more rapidly, fewer 
of the DCT coefficients will have small values, and so fewer will be discarded as a result 
of quantisation. [n effect, the JPEG algorithm blurs the image most in places where the 
blurring won't be noticed and tries to preserve information in the more interesting parts of 
the image. 

After quantisation, the DCT coefficients are reordered into a one-dimensional sequence 
by following a zigzag path from the lowest frequency component to the highest (Figure 12.7). 
The first va lue in the sequence is the zero-frequency coefficient. It is usually much larger than 
the other coefficients, and can be stored more efficiently by delta encoding-i.e., by storing 
the difference between its value and the value from the previous block. The remainder of 
the sequence typically contains several long runs of zeros which may be compressed by 
run length encoding. Finally, a Huffman coding scheme can be applied to compress the 
coefficients still further. 

u 
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Figure 12_7 Reordering of DCT coefficients. 

To decompress a JPEG-compressed image, we follow the procedure in reverse. The 
Huffman coded bit sequence is decoded and runs of zeros are expanded, giving sequences 
of 64 values per block. These are written back into an 8 x 8 array in zigzag fashion and 
dequantised. Dequantisation simply involves multiplication by values in the quantisation 
table. An inverse DCT of this array of coefficients followed by addition of 128 yields an 
8 x 8 block of pixels with values that are similarto those in that same part of the original, 
uncompressed image. 
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JPEG compression in Java 

Java provides a variety of classes to handle JPEG image compression and decompression 
in the com. sun. image. codec . jpeg package. JPEGlmageEncoder encodes an image as 
a JPEG datastream, the process being controlled by the parameters in JPEGEncodeParam. 
Similarly, JPEGlmageDecoder decodes a JPEG datastream and reconstructs an image, 
the process being controlled by parameters in JPEGDecodeParam. Note that these four 
classes are specified as interfaces, which means that they cannot be instantiated directly; 
instead, the factory class JPEGCodec provides methods that manufacture instances of objects 
implementing these interfaces. For example, to compress a BUfferedlmage object named 
image, writing the results to a file called test. jpg, we can do 

JPEGlmageEncoder output = 

JPEGCodec.createJPEGEncoder(new FileOutputStream(lItest.jpgll)); 
output.encode(image); 

If we wish to control the process, we must use JPEGCodec to manufacture a set of 
encoding parameters, which we may then modify. For example. to compress an image with 
a quality factor of 0.25, we would do the following: 

JPEGEncodeParam parameters = 
JPEGCodec.getDefaultJPEGEncodeParam(image); 

parameters.setQuality(O.25, true); 
JPEGlmageEncoder output = 

JPEGCodec.createJPEGEncoder(new FileOutputStream(lItest . jpgll), 
parameters); 

output.encode(image); 

The first line of this example manufactures a parameter object suitable for encoding the 
specified image. The parameters are at default values that can be modified by invoking 
methods such as setQuality(). This method takes two parameters, the first being the 
desired quality (0.0- 1.0) and the second a Boolean flag indicating whether the baseline 
quantisation tables specified by the JPEG standard are to be used. 

The quantisation tables used in JPEG compression are represented as instances ofthe class 
JPEGQTable. A static method of this class allows us to access the standard quantisation 
table: 

int[] data = JPEGQTable.StdLuminance.getTable(); 

The array data contains the quantisation values Q(u, v ) arranged in zigzag order. We can 
also retrieve a JPEGQTable from a JPEGEncodeParam. This allows us to investigate the 
relationship between the quality parameter and the quantisation table used to encode an 
Image: 

JPEGEncodeParam parameters = 
JPEGCodec.getDefaultJPEGEncodeParam(image); 

parameters.setQuality(O.25, true); 
int[] data = parameters.getQTable(O).getTable(); 
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This approach is used in the program JPEGquantTable on the CD, This program takes a 
quality parameter specified on the conunand line and writes to standard output the quanti­
sation table associated with that parameter. 

One further application, JPEGTool, is provided on the CD as a practical example of how 
to use Java's JPEG classes, This program reads an image from a named file and displays it 
in a tabbed pane, Also displayed is a version of the input image that has been subjected to 
one cycle of JPEG compression and decompression, The quality parameter can be varied 
between 0,0 and 1.0 using a slider beneath the tabbed display, The compression ratio and 
RMS error (Equation 12.2) for this quality setting are displayed beneath the slider. A menu 
is provided, allowing the output image or lhe difference between the input and output images 
to be saved, Figure 12,8 shows the application in action, 

~ J PE G Tool \ \ T est\mallhead png I!I~ 13 
Eile 

Quality 

r:Q1==== 
0.0 0.2 0.4 0.6 0.8 1.0 

Compression ratio 21. 650 RMS Error 10.580 

Figure 12.8 JPEGTool in action, 
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Examples 

The JPEGTool application was used to compress the synthetic and real images of Fig­
ure 12.3. Figure 12.9 shows part of the real image compressed using a quality parameter 
of 0.8. The compression ratio achieved here is 12.88, five times greater than that achieved 
using deflation, and there are no significant differences between this image and the original. 
Also shown in Figure 12.9 is the same image compressed with a quality parameter of 0.2. 
This results in a compression ratio of 32.4, roughly twelve times greater than that achieved 
using deflation. Here, the artefacts of compression are much more obvious- although this 
image is still adequate for many purposes. 

Figure 12.9 The image of Figure 12.3(b), compressed using the lossy ]pEG technique. 
Top: quality of 0.8, giving a compression ratio of 12.88 and an RMS error of 1.64. Bottom: 
quality of 0.2, giving a compression ratio of 32.4 and an RMS error of 3.84. 

The lossy JPEG algorithm is not well-suited to the compression of very simple images. 
This can be seen in Figure 12.10(b), which shows how a portion of the synthetic image in 
Figure 12.3(a) looks after a cycle of JPEG compression and decompression. Compression 
artefacts are significant in this image, and yet the compression ratio that has been achieved 
here-42.83- is inferior to that obtained using the error-free techniques of deflation or 
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12.5.2 

(a) (b) (c) 

Figure 12.10 JPEG compression of simple. synthetic images. <a) Portion ofthe original 
image. (b) Corresponding portion of the compressed image. (c) Difference between the 
original and compressed images, inverted and equalised. 

run length encoding (see Table 12.2). Figure 12.10(c) shows the difference between the 
compressed image and the original image, inverted and equalised for added clarity. We can 
see that the differences between the images. occur in blocks that straddle sharp boundaries 
between image features. In each of these blocks, many of the DCT coefficients are being 
discarded-and yet most of them are needed to represent a sharp edge adequately. This 
leads to highly visible artefacts. The artefacts in real images are often less obvious to the 
eye because they lie embedded within the complex textures that exist in these images. 

Fractal compression 

Fractal geometry is capable of creating some striking images- a classic example being the 
Mandelbrot set depicted in Figure 12.11. Fractal shapes appear to be incredibly complex, 
and yet they are generated by simple rules. In the case of the Mandelbrot set, repeated 
evaluation of a very simple equation generates a fractal with infinite levels of detail. We 
can zoom in on the domain of the Mandelbrot set and see the same structure repeating 
itself again and again. Another example is the Koch curve. This is generated by the 
recursive application of a very simple rule. We start with a straight line and divide it into 
three segments of equal size. The middle segment is then replaced with two sides of an 
outward-facing equilateral triangle. This procedure is then repeated for each line segment. 
Figure 12.12 shows the results. Application of this rule to an equilateral triangle generates 
a shape that resembles a snowflake. 

Fractals share the property of self-Similarity; parts of the shape look like transformed 
copies of other parts. This self-similarity is a kind oftedundancy. It allows complex shapes 
to be described by very simple transformational rules. Fractal image compression takes this 
idea and applies it to images. The assumption is that we can represent one group of pixels 
in an image as a transformed copy of some other group of pixels. [fthe transformation can 
be represented more compactly than the pixel data, compression is achieved. Of course, 
for real images, is it unlikely that two different regions differ only by some geometric 
transformation. The pixel values themselves are likely to differ. We can approximate the 
difference by incorporating a simple, linear transformation of grey level. Any residual 
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Figure 12.1 1 Part of the Mandelbrot set. 

Figure 12.12 First five iterations in the generation of the Koch curve. 
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difference not explained by this transformation of grey level will be lost; hence, tractal 
compression is a lossy technique. 

In practical fractal image compression algorithms, we partition the input image into a 
set of non-overlapping square 'ranges'. For each range, we must search for a larger square 
region of the image, called the domain, that is most similar to the range. The domain is 
typically restricted to be twice the size of the range, and domains can, in theory, overlapl. 
Compression is achieved by encoding the parameters of the affine transformation that maps 
the chosen domain onto the range. Affine transformations were discussed in Chapter 9. The 
main difference here is that the transformation is three-dimensional, taking into account not 
only the geometric relationship between domain and range but also the relationship behveen 
grey levels in the two regions. 

The geometric part of the transformation is specified by six numbers, and the mapping 
of grey level is represented by a further two numbers-corresponding to the brightness and 
contrast parameters of Equation 6.3. The scaling and translation elements of the geometric 
transformation are already known; the scale factor is 0.5, and the translation parameters are 
simply the offsets of the upper-left corner of the range relative to the domain. Because the 
domain and the range are both square, there are only eight possible differences in orientation 
between them (allowing for both rotation and reflection). For each orientation, we must 
determine the grey level mapping parameters by a least-squares procedure. We then store 
the best set of translation, orientation and grey level mapping parameters. The orientation 
parameter can be stored very compactly, using only three bits; the brightness and contrast 
parameters can each be quanti sed and stored using fewer than eight bits. 

Figure 12.13 shows an image and two fractally-compressed versions of that image. These 
images were compressed using an implementation of the algorithm that attempts to use 
16 x 16 ranges, subdividing these into 4 x 4 ranges ifno domain can be found for which the 
RMS error lies below an error tolerance parameter. This parameter acts as a quality factor 
for the compression. When it is high, suitable domains can be found for many 16 x 16 
ranges, so fewer ranges are required to cover the image and fewer transforn1ations need to be 
stored. When the error tolerance is low, most of the ranges in the image will be 4 x 4 pixels 
in size, so there will be more of them and more transformations will need to be stored. 
Figure 12.13(b) was produced using an error tolerance of 8, resulting in a compression 
ratio of 9.57-nearly eight times greater than that achievable using the lossless deflation 
algorithm described in Section 12.4.4. There is some loss of sharpness relative to the original 
image in (a) due to the size of the ranges, but the quality is reasonable. Figure 12.13(c) was 
produced using an error tolerance of20. This almost halves the number of transformations 
required and doubles the compression ratio. However, image quality is significantly lower, 
with many of the 16 x 16 ranges visible as homogeneous blocks of pixels. 

Decompression is much more straightfonvard and much faster than compression. It 
exploits one of the fundamental theorems of fractal image compression: the contractive 
mapping theorem. The details ofthis need not concern liS here; instead, we simply note that 
the theorem allows us to reconstruct the original image from an arbitrary image-one that is 
completely black, for example-simply by the iterative appl ication of the transformations 
that were computed by the compression algorithm. This procedure converges to a fixed 

1 In practice, it may be more expedient. computationally. 10 restrict or prevent overlap. 
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(a) (b) 

Ce) 

Figure 12. 13 Examples of fractal image compression. Cal Original image. (b) Image 
compressed using 2194 transformations, giving a compression ratio of 9.57. (b) Image 
compressed using I 180 transformations, giving a compression ratio of 18.13. 

point that is close to the original image, provided that a reasonable partitioning ofthe image 
was carried out during compression. It works because the transformations incorporate grey 
level information as well as geometric information. Figure 12.14 shows reconstructions of a 
fractally-compressed image after 1, 3 and 5 iterations. Beyond this point, the improvements 
to the reconstructed image are usually imperceptible. 

An interesting and potentially useful feature of fractal decompression is that it is 
resolution-independent. The compressed image is merely a list of affine transformations, 
and these can be applied at any scale we desire. For example, we can compress a 100 x 100 
image and decompress it into an image with dimensions of 300 x 300. We pay nothing, 
computationally, for scaling the image up in this manner. Also, the decompressed image 
will not have the blocky appearance characteristic of simple image magnification tec1miques 
such as pixel replication. 
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(a) (b) 

(c) 

Figure 12.14 Iterative reconstruction of a fractally-compressed image. (a) After I 
iteration, starting from a random image. (b) After 3 iterations. (c) After 5 iterations. The 
visible effect of further iterations is negligible. 

12.6 Compression of moving images 

The need for high compression ratios is particularly acute in the case of video data. For 
this reason, digital video standards such as Apple's QuickTime or Microsoft's Video for 
Windows both support frame-by-frame JPEG compression and decompression. However, 
the JPEG algorithms were designed for the compression of sti ll , rather than moving, images. 
The reductions in dataset size needed to fit an entire movie onto a CD, or to support video 
conferencing across networks with comparatively low bandwidths, cannot be achieved 
unless we additionally take into account interframe redundancy. In any video sequence, 
there will be areas that either do not change over a significant number of frames, or else 
change in a relatively smooth and continuous way. The human visual system gives much 
less emphasis to these regions, so they can be highly compressed in time without affecting 
video playback quality to any serious degree. 
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The Motion Picture Experts Group (MPEG) is responsible for developing worldwide 
standards for lossy video compression. similar to those developed by the JPEG organisation 
for still images. The current standards are known as MPEG-I and MPEG-2. The former 
is suitable for low resolution sequences with data rates of up to 1.5 Mbit per second; the 
latter support higher resolutions (e.g., 640 x 480) with data rates ofbctween 4 and 10 Mbit 
per second. Both support the simultaneous compression of video and audio data and the 
synchronisation of the two datastreams. A new standard, known as MPEG-4, is imminent. 

The current MPEG standards use a DCT-based block coding scheme to compress a 
referencefiume. These reference frames occur at regular intervals in the input sequence­
e.g., once every fifteen frames. The next step is to carry out motion estimation for subsequent 
frames. This involves computing the correlation between blocks of pixels in the current 
frame and blocks in the reference frame. Blocks are moved around in sub-pixel increments 
to estimate their motion accurately. If it is determined that a block has no motion, a special 
'no change' code can be output, signifying that thc corresponding block of pixels from the 
reference frame can be used during decompression. If the block has motion, then it may be 
similar to a nearby block in the reference frame-in which case we can output the location of 
that block. If the correlation between a block and ncarby blocks from the reference frame is 
not sufficiently high, the block must be coded as per JPEG compression. The cost of motion 
estimation is high, so the MPEG technique is highly asymmetric. In fact, compression is 
often hardware-assisted. 

12.7 Further reading 

For those interested in the general principles and practice of data compression, onc of 
the definitive recent texts is the book by Nelson and Gailly [34]. This contains detailed 
descriptions of most of the techniques discussed in this chapter and presents implementations 
written in C. (Converting this code to Java should be relatively straightforward.) 

LZ78 dictionary-based compression and its derivatives are not described here; for further 
details, see Nelson and Gailly [34]. The original paper by Ziv and Lempel [54] may be of 
historical interest. Implementations of LZ78-based algorithms written in C can be found in 
Nelson and Gailly's book and in the book by Pitas [37]. Documentation on the LZ77-based 
deflation algorithm is available online as the Internet Request For Comments document 
RFC 1951. (See http://sunsi te. org. uk/pub/rfc or do a web search for ' RFCI951' 
to locate a site near you.) 

A useful information source for JPEG compression is the paper by Wallace [49]. Gonzalez 
and Woods [20] discuss a variety oftechniques based on transform coding in some detail and 
present worked examples ofJPEG compression and decompression. Practical algorithms for 
fractal image compression and decompression are dissected and implemented by Nelson 
and Gailly [34]. For those interested in the theoretical background to this technique, a 
number of books are now available [1 5, for example]. 

One new and promising technique not discussed here is wavelet-based image compres­
sion. This outperforms DCT-based compression to the extent that the forthcoming JPEG-
2000 standard for lossy compression wi ll abandon the DCT in favour of the wavelet trans­
form. Like the DCT, a discrete wavelet transform (DWT) generates a frequency-based 
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representation of an image. Unlike the DCT, the basis functions of a DWT have 'compact 
support'; that is, they are not infinite in extent. This makes them more suitable for the rep­
resentation of highly localised structure such as edges. The enhanced information-packing 
capabilities of the DWT lead to greater redundancy when its coefficients are quanti sed and, 
hence, greater compression. 

A brief inh'oduction to wavelets in the context of image processing is given by Um­
baugh [48]. Castleman [9] devotes an entire chapter to this subject. Press et al. [39] 
describe the theory and give some C code that demonstrates wavelet-based image com­
pression. A Java prototype for a jPEG-2000 image decoder can be found at http: 
//ltswww.epfl.ch/-neximage/decoder/. 

The MPEG standards are described in a paper by Le Gall [16] and in various recent 
books [e.g., 32, 22]. Information can also be found online athttp://drogo . cselt. stet. 
i t/mpeg/, the official website of the MPEG committee, and at http://www . mpeg. org, 
an index of MPEG resources. 

I 2.8 Exercises 

I. The Del taEncoder program compresses an image by delta compression. Implement 
a class Del taDecoder that decompresses the datastream generated by Del taEncoder. 
Test the two classes and verify that the compression is lossless. 

2. Repeat Exercise I for RunLengthEncoder. 

3. Suppose we have two images. One of these images has a broad, flat histogram and the 
other a narrow, highly-peaked histogram. Which image will compress better by means 
of Huffman coding? 

4. Why does the JPEG technique employ 8 x 8 blocks of pixels? What would be the likely 
effect on an image of using a different block size, say 16 x 16 or 32 x 32? 

5. Consult the references for further details of fractal image compression and implement 
this technique in Java. 



APPENDIXA 

Glossary of Image 
Processing Terms 
Active imaging Mode of imaging in which an artificial source of energy is used. 

Adaptive filter A filter whose behaviour changes in response to variations in local image 
properties. 

Affine transformation First-order geometric transformation involving a combination of 
translation, scaling, rotation and skewing. 

Aliasing Phenomenon occurring when an image is undersampled, i.e., when the sampling 
rate is less than twice the Nyquist frequency. Information with a high spatial frequency 
is incorrectly represented, manifesting itself as an artefact with a lower spatial frequency. 

Alpha-trimmed mean filter A filter that sorts pixel values from a neighbourhood into 
ascending order, discards a certain number of values at either end of the list and then 
outputs the mean of the remaining values. 

Amplitude spectrum Term given to the magnitudes ofthe complex numbers produced by 
the FOllrier transform of an image. The amplitude spectrum is a measure of how much 
of each frequency component is present in the image. 

Analogue-to-digital converter, ADC Hardware used to convert an analogue signal (e.g., 
serial video) into digital form. 

Anti-aliasing Filtering operation designed to remove frequencies that exceed half the sam­
pling rate achieved by an analoglle~to-digital converter, thereby guaranteeing that the 
./l.lyquist criterion is met. 

Aperture An opening that admits light into a camera; a hole of variable size, built into a 
lens, that controls the total amount of light falling on a sensor. 

Backward mapping The process of determining values for pixels in a geometrically trans­
formed image by applying the inverse transformation to pixel coordinates. This gives 
coordinates in the input image from 'which a pixel value can be interpolated. 

Band pass filter Filter that passes a certain range offrequencies whilst suppressing others. 

Band stop filter Filter that has the opposite effect to a band pass jiller, suppressing a 
particular range of frequencies whilst passing others. 

Barrel distortion Distortion caused by camera optics, in which straight lines appear to 
bend outwards, away from the image centre. 

Basis function Term used to describe one of the two-dimensional sine or cosine functions 
that form the basis of a Fourier series representation of an image. 

Bilinear transformation Geometric transformation characterised by eight coefficients, 
used in computing a piecewise warp of an image. 
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Binary image Two-level image; image in which pixels can take on one of two possible 
values (usually 0 and I). 

Block coding Term applied to a class of image compression techniques that operate on 
blocks of pixels. 

Blocking artefacts Features visible in images that have been highly compressed by means 
of the JPEG compression algorithm, caused by discontinuity effects in the discrete cosine 
transform applied to 8 x 8 blocks of pixels. 

Brightness adaption The means by which the eye adjusts its overall sensitivity to cope 
with a huge range of light intensities. 

Butterworth low pass filter Popular form of low pass filter having a transfer function that 
varies smoothly with frequency. 

Butterworth high pass filter Popular form of high pass filter having a transfer function 
that varies smoothly with frequency. 

Canny edge detector A near-optimal edge detector combining a Gaussian filter for 
smoothing with gradient vector calculation, non-maximal suppression and hysteresis 
thresholding. 

CCD Charge-coupled device; a solid-state sensor comprising a rectangular array of pho­
tosites formed from a semiconductor such as silicon. 

Closing Morphological operation on a binary or greyscale image, defined as an iteration 
of dilation and erosion. 

CMY model C%llr model used in printing, in which colours are represented as a linear 
combination of cyan, magenta and yellow components. 

CMYK model Colour model used in printing, in which the CMY model is extended by the 
addition of a true black component. 

Coding redundancy A redundancy in the data used for image representation, arising when 
the codewords chosen to represent pixel values are not optimal. 

Codewords Symbols used to represent pixel values in an image. The codewords used for 
images are normally the set of integer values that can be represented with a fixed number 
of bits (eight, typically). 

Colour model Means of specifying colour in a standard, generally accepted way. 

Coma Lens defect in which off-centre rays of obliquely-incident light come to a focus to 
one side of the central ray position, giving point objects a comet-like appearance. 

Compression ratio Measure of the performance of a compression algorithm, defined as 
the ratio of input image size to compressed image size. 

Cone Photoreceptor in the retina of the eye, responsible for colour vision. 

Contextual segmentation Segmentation that takes into account the context ofa pixel, i.e., 
the relationships that exist between a pixel and its neighbours. 

Control point A landmark point in an image, used to define a geometric transformation 
of some kind (e.g., a warp that registers one image with another). 

Convolution An operation that swns the products of pixel values from a neighbourhood 
and coefficients from a convolution kernel. 

Convolution kernel Small array of coefficients that are multiplied by pixel values during 
convolution. 
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Convolution theorem Expression of the re lationship between convolution and multiplica­
tion in the frequency domain. 

Correlation Neighbourhood operation that closely resembles convolution. 

Cumulative histogram Record of the cumulative frequency of occurrence of grey levels 
in an image. Used in histogram equalisation. 

Dark current Signal produced by a CCD or some other sensor in the absence of ilium ina­
tion. 

Deconvolution Reversal of convolution, typically implemented as an inverse filter . 

Dilation Morphological operation on binary or greyscale images, characterised as hitting 
or intersection of a structuring element with an image. 

Discrete cosine transform Frequency domain transformation used in JPEG compression. 

Discrete Fourier transform A Fourier transform defined for sampled data. 

Disparity Difference in the apparent position of a point from the scene in the left and right 
images of a 'stereo pair'. 

Dither matrix Matrix of pseudorandom thresholds used for dithering. 

Dithering Technique used to generate halftone versions of greyscale or colour images . 

Electromagnetic (EM) spectrum The range of radiation produced by oscillations of elec-
trically charged material, including such things as x-rays, microwaves and visible light. 

Entropy Measure of disorder and information content in an image, which can be estimated 
from its histogram. 

Erosion Morphological operation on binary or greyscale images, characterised as fitting 
of a structuring element into the image. 

Error diffusion Halftoning technique in which the error that results from thresholding is 
propagated to neighbouring pixels. 

Fast Fourier transform, FFT Efficient method for calculating the Fourier transform of 
an image. 

Fidelity criteria Ways of measuring the effect oflossy compression techniques on images. 

Field curvature Curvature of the surface of best focus for a lens. 

Filter transfer function Two-dimensional function that is multiplied by the Fourier tmns­
Jorm of an image in order to carry out filtering; Fourier transform of a convolution 
kernel. 

First-order interpolation Method of computing output pixel grey level in a geometrically 
transformed image as a distance-weighted function of the grey levels of neighbouring 
pixels in the input image. 

Focallength Distance from the lens plane to the point at which parallel incident rays 
converge; the standard measure of the magnifying power of a lens. 

Forward mapping In geometric transformations, the process of mapping pixel values in 
the input image onto pixels in the transformed output image. 

Fourier coefficients Weighting factors applied to the sine and cosine basis Junctions in a 
Fourier series. 

Fourier series Representation of a periodic signal as a weighted sum of sine and cosine 
basis Junctions. 
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Fourier transform, FT Projection of a signal onto a set of sine and cosine basis junctions 
of varying frequency. 

Fovea Small region of the retina providing the most detailed information about a scene. 

Fractal compression Lossy compression technique that exploits the similarity. under affine 
trans/annation, of different parts of an image. 

Frequency domain Realm in which an image is represented as a set of spatia/frequencies. 

Gamma Parameter specifying the non-linearity in response of a monitor's cathode ray tube. 

Gaussian filter Filter that blurs an image using a non-uniform cOllvolution kernel whose 
coefficients are samples from a hvo-dimensional Gaussian function. 

Gradient vector A way of representing the magnitude and direction of changes in grey 
level in the vicinity of a pixel. 

Grey level Quantisatiol1 level used to represent intensity at a pixel, displayed as a shade of 
grey. 

Greyscale A set of grey levels, ranging from black to white. 

Half toning Simulation of a greyscaJe or colour variation using binary patterns of black or 
coloured dots. 

High pass filtering Filtering technique that attenuates low spatial frequencies whilst leav­
ing high spatial frequencies unaffected. 

Histogram Means of recording the frequency distribution of grey levels in an image. 

Histogram equalisation Technique for contrast enhancement based on a flattening of an 
image histogram. 

Histogram specification Technique for contrast modification in which a user can specify 
a desired shape for a histogram. 

Hit and miss transform Morphological operation used for shape detection, in which a 
matched pair of structuring elements are used to probe the inside and outside of image 
features simultaneously. 

HSt model Colollr model in which colour is represented by hue, saturation and intensity 
components. 

Huffman coding Lossless compression technique in which pixel values are represented by 
variable-length codes. 

Hysteresis thresholding Technique used by the Canny edge detector to produce contours 
from edge pixels having high gradients. 

Ideal low pass filter Filter that blocks all frequencies above a cutoff frequency. 

Ideal high pass filter Filter that blocks all frequencies below a cutoff frequency. 

Idempotence Property of opening and closing operators, whereby the effect of multiple 
iterations of the operator is no different from the effect ofa single iteration. 

Image registration Process by which two images of the same scene, obtained at different 
times or by different means, are matched geometrically. 

Imaging Image acquisition; the process of sensing our surrow1dings and then representing 
the measurements that are made as an image. 

Interfr.me redund.ncy Temporal redundancy in video data, arising from the fact that 
most pixels change very little or not at all between successive frames. 
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Interpixel redundancy Spatial redundancy in image data, arising because the values of 
neighbouring pixels are often strongly correlated. 

Inverse filter Deconvolution technique in which degradation is removed by filtering an 
image with the inverse of the point spread/unction. 

Inverse Fourier transform Reconstruction of a signal from its projections onto sine and 
cosine basis functions of varying frequency. 

JPEG compression Lossy compression technique based on the discrete cosine transform. 

Laplacian Second-order derivative of an image; a convolution kernel approximating the 
second-order derivative. 

Light Visible electromagnetic energy with a wavelength between 400 and 700 nanometres. 

Linear fiitering Use of a linear operation (e.g., convolution) to modify the spatial infor­
mation content of an image. 

Look-up table, LUT Means of storing a precomputed grey level mapping, to speed up 
brightness/contrast enhancement. 

Lossless compression Information-preserving compression; compression in which the re­
constructed image is identical to the input image. 

Lossy compression Compression with information loss; compression j'n which carefully 
chosen components of the information in an image are discarded deliberately in order 
to achieve high redundancy and hence high compression. 

Low pass filtering Filtering technique that attenuates high spatial frequencies whilst al­
lowing low frequencies to pass unattenuated. 

Mach banding Phenomenon in which bands of uniform brightness appear to be brighter 
at their edges than at their centres. 

Maximum filter Non-linear operation in which the central pixel of a neighbourhood is 
given the maximum value from that neighbourhood. 

Mean filter Linear operation in which the central pixel of a neighbourhood is given the 
mean of the values in that neighbourhood. 

Median filter Non-linear operation in which the central pixel of a neighbourhood is given 
the middle-ranked value from ihat neighbourhood. 

Minimum filter Non-linear operation in which the central pixel of a neighbourhood is 
given the minimum value from that neighbourhood. 

Minimum mean square error filter An adaptive filter whose smoothing effect depends 
on local grt;y level variance. 

Modulation transfer function, MTF Fourier transform of the point spread fimction of an 
imaging system. 

Morphing Technique for smoothly transforming one image into another, using geometric 
warpmg. 

Morphological smoothing An opening and a closing applied in sequence to a greyscale 
image. 

MPEG compression Video compression technique that attempts to eliminate interframe 
redundancy in image sequences. 
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Negation A mapping of grey level that gives the effect of a photographic negative, black 
become white and vice versa. 

Neighbourhood operations The class of image processing operations in which a pixel's 
new va lue depends not only on its original value but also on the values of surrounding 
pixels. 

Non-contextual segmentation Segmentation on the basis of some global attribute, without 
reference to the spatial relationships between pixels. 

Non-maximal suppression A stage in the Canny edge detector whereby local maxima in 
grey level gradient are thinned down to ridges that are only one pixel wide. 

Nyquist criterion Requirement that the sampling frequency for a digital signal should be 
at least double the highest frequency present in a signal. 

Opening Morphological operation on binary or greyscale images, defined as an iteration 
of erosion and dilatioll. 

Passive imaging Image acquisition using energy sources that are already present in the 
scene. 

Patterning Simple halftoning technique in which a pixel of a greyscale image is replaced 
by a small pattern of black and white pixels taken from a fixed set of such patterns. 

Period Duration of one cycle of a periodic signal. 

Photopic vision 'Bright light ' vision; vision involving cones in the retina. 

Photoreceptor Generic term for IUds and cones, the two types of light-sensitive cells in 
the retillCj. 

Photosite A semiconductor junction acting as one of many discrete imaging elements in a 
CCD. 

Pincushion distortion Distortion caused by camera optics, in which straight lines appear 
to bend inwards, towards the image centre. 

Pixel Contraction of ' picture element'; a term for one of the array elements that constitute 
a digital image. 

Point spread function, PSF Linear model of the blurring caused by the environment and 
the imaging system. 

Power spectrum The square of the amplitude spectrum. 

Prewitt kernels Well-known convolution kernels for computing grey level gradient in the 
x and y directions. 

Psychovisual redundancy Redundancy in an image resulting from the insensitivity of the 
human visual system to particular image characteristics. 

Quadratic warp Non-linear geometric transformation described by two transformation 
equations with terms up to x 2 and )'2. 

Quantisation Digitisation of the values stored at each pixel of an image. 

Quantisation level Value stored at a pixel after quantisation . 

Rank filter Non-linear fi lter in which pixel values from a neighbourhood are sorted into 
order and the value with a particular rank in the sorted list is selected as the new value 
for a pixel. 
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Redundancy A term describing the presence of data that are not needed to convey the 
information in an image. 

Region growing Segmentation technique that forms regions of similar, connected pixels. 

Region of interest Area of an image, usually rectangular, that will be the subject of further 
processing or analysis. 

Retina Light-sensitive layer of cells occupying the inner surface of the eye. 

RGB model Colollr lIIodel used by image acquisition and display devices, in which colour 
is represented as a linear combination of red, green and blue components. 

Ringing Artefact offi ltering or of reconstruction from a limited set offrequencies, in which 
edges create a pattern of ripples in the image. 

Rod The more numerous of the two types of photoreceptor in the retina of the eye, sensitive 
to light intensity. 

Run length encoding, RLE Lossless compression technique in which a run of pixels with 
the same value is replaced by the va lue and the length of the run. 

Sampling Digitisation of the spatial coordinates of an image, so as to produce a discrete 
array of numerical data. 

Sampling rate Rate at which a video signal is sampled during digitisation. 

Segmentation Partitioning of an image into distinct regions that, ideally, correlate strongly 
with features of interest. 

Scotopic vision <Dim light' vision; vision involving only the rods in the retina . 

Sliding window compression Dictionary-based compression technique in which the dic­
tionary is a window of previously-seen data that slides along the datastream. 

Sobel kernels Well-known convolution kernels for computing grey level gradient in the x 
and y directions. 

Spatial domain The domain of the image, normally defined by pixels in a Cartesian coor­
dinate system. 

Spatial frequency Rate of change of intensity with distance moved in an image. 

Spherical aberration Lens defect in which central and off-centre light rays are brought to 
a focus at different distances from the lens. 

Split and merge algorithm Segmentation technique in which an image is divided into 
regions that are iteratively subdivided and merged until some measure of uniformity is 
achieved. 

Structuring element, SE Shape or template used to probe an image in morphological 
operations. 

Thresholding Segmentation technique in which pixels are assigned to one class or another, 
depending on whether an attribute (typically grey level or colour) exceeds a specified 
threshold. 

Top-hat transform Morphological operation performed on greyscale images, obtained by 
subtracting an opened image from the original image. 

Transform coding A technique in image compression, where we create a frequency-based 
representation of an image and discard some of the high frequencies to create redundan­
cies. 
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Uniformity predicate Test used in segmentation to evaluate the similarity of a set of con-
nected pixels. 

Unsharp masking Process of subtracting from an image a blurred version of that image. 

Volume Three-dimensional analogue of an image; 3D array ofvoxels. 

Voxel Contraction of 'volume element'. 

Wiener filter A noise-tolerant technique for the restoration of degraded images. 

Zero crossing Point at which the second derivative of an image changes sign. 

Zero-order interpolation Method of computing output pixel grey level in a geometrically 
transformed image by calculating coordinates for the corresponding point in the input 
image and rounding to the nearest integer. 

Zero-phase-shift filter Term used in the frequency domain to describe filters that affect 
amplitude only, not phase. 

24-bit colour Colour specified using three 8-bit integers, one for each component of the 
colour model. 

4-neighbourhood Neighbourhood consisting of a pixel and the pixels that are adjacent 
vertically and horizontally. 

8-neighbourhood Neighbourhood consisting of a pixel and the pixels that are adjacent 
vertically, horizontally or diagonally. 
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of colour images 129-30,129 
effects of grey level mapping 121, 122 
in Java 122-4 
non-uniqueness of 121 
three-dimensional 129 
two-dimensional 130,131 

history of digital image processing (DIP) 4 
hit and miss transfollTI 287-8. 288 
homogeneous coordinates 231 
Huffman coding 305- 6, 305, 306, 306 
hybrid filters J 84-5 
hysteresis thresholding 171 

ideal high pass filter 218, 218 
ideal low pass filter 214, 215 
idempotent 286 
image class 33- 5 
image communication 299 
image compression 63-4 

lossless compression 299, 302- 9 
lossy compression techniques 310-20 
moving images 320-1 
need for 298- 300 
performance characterisation 300-1 
redundancy 299, 300 

image creation 8 
image, definition 1-4 



image fonnat conversion 79 
image object 33 
image processing, definition 4-6 
image registration 229 
image representation 32- 7 
image rotation 243- 5, 243 
image warping 6, 6 
imaging, definition 8 
information, definition 299 
information hiding 33 
infrared (IR) radiation 3 
inheritance 39, 40, 41 
interchange formats 63--4 
interface 33, 77 
interframe redundancy 300 
Internet 299 
interpixel redundancy 300 
interpolation 239--42 

first-order 240-1,240,241 
higher-order 241- 2 
zero-order 239 

intersection 283, 284 
inverse filter 223--4 
inverse Fourier transform 195 
inversion 106 
iris 12 

Java l.0/l.! 
acquiring and processing pixel data 50-3 

Image Filter class 52- 3, 53, 53 
PixelGrabber class 50-2 

images in 45-7 
loading 45- 7 

producer-consumer model 47- 50, 48 
lava Advanced Imaging 59- 60 
lava2D API 53-9 

Bufferedlmage class 54-6, 54, 55 
reading 58-9 

BufferedlmageFilter 58 
BufferedImageOp 58 
DataBuffer classes 58 
Raster and WritableRaster clas s es 

56- 8,57 
RasterOp 58 

JFIF see JPEG compression 64 
JPEG compression 59, 64, 310-16 

in Java 313-1 6 
quantisation table 311 

Koch curve 316, 317 

Index 117 

Laplacian 168-71 
Laplacian of Gaussian (LoG) filter 170 

edge detection with 171 
inverted 170 

lens 9 
linear filtering 154-63 

definition 154- 5 
high frequency emphasis 158- 9 
high pass 155, 158, 158 
in Java 159-63 

example applications 163 
new kernel classes 159- 62 

low pass 155-7 
linear interpolation 241- 2, 242 
linear mapping, grey level 104-6, 105 
logarithmic mapping, grey level 109, 109, 110 
logical operations 101 
log-polar sampling pattern 25, 26 
look-up table III 

Java classes and 113- 17 
lossless algorithm 67 
lossless compression 299, 302- 9 
lossy compression 299, 310-20 
low pass filtering 155- 7, 156, 214-17, 218 
LZ77 technique 307 
LZ78 technique 307 
LZW algorithm 307 
LZW technique 307 

Mach banding 15 
magnification factor 9 
Mandelbrot set 316, 317 
maximum filter 180-2, 181 

performance 181- 2 
mean filters 156 
median filter 175-9 

performance 179 
minimal mean square error (MMSE) filter 186 
minimum filter 180- 2, 180 

perfonnance 181- 2 
modulation transfer function (MTf) 223, 224 
morphing 247- 8 
morphological filtering 290-92 
morphological image processing 

compound operations 283- 9 
definition 271 
fundamental operations 276-83 
greyscale morphology 292- 96 
morphological filtering 290-92 
structuring element 271-2, 272, 272- 3 
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morphological smoothing 294, 295 
motion blur 5-6, 5 
Motion Picture Experts Group (MPEG) 321 

NASA Jet Propulsion Laboratory 4 
nearest neighbour interpolation 239, 239, 

241 - 2, 242 
negation 106, 107 
neighbourhood operations 

adaptive filtering 185- 6 
convolution 134-43, 145- 53 
correlation 143-4 

definition 133 
edge detection 164-75 
hybrid filtering 184-5 
linear filtering 154-63 
rank filtering 175- 84 

noise level 99 

noise reduction 164 
noise removal 99 
non-maximal suppression 171 , J 72 
nuclear magnetic resonance imaging 38 

Nyquist criterion 23 

opening of an image 284-6, 285 
greyscale 293-4, 293, 294 
idempotent 286 
in Java 288- 9 

optic disc 13 
optic nerve 13 
optics 9- 11 

passive imaging 8- 9 
patterning 88 
PBM format (portable bitmap) 64-5 

reading images 69- 73 
period 188 
periodicity 199 
PGM (Portable Grey Map) format 64- 5, 66 

reading images 69-73 
phase 189 
phase spectrum 196, 197 
photography 2 
photopic vision 14 
photosites 11 
piecewise warping 246, 247, 248 
pincushion distortion II 
pixel 21 
pixel connectivity 260-2 

PNG (Portable Network Graphics) format 64, 
67- 8, 68 

reading images 76- 7 
point spread function (PSF) 223 
polymorphism 42 

power spectrum 196 
angular integration 269, 269 
radial integration 269, 269 

PPM format (portable pixmap) 64-5 
reading images 69-73 

Prewitt jernels 165 
primary colours 27 
printing 88- 94 

colour images 92--4 
greyscale images 88- 92 

processing graph 59 
produced-consumer paradigm 47- 50, 48 
psychovisual redundancy 300 
pupil 12 
push model of image processing 47 
pushbroom imaging 229 

quadratic warp 246 
quantisation 20, 27, 28 
quantisation levels 27 

radar 3 

radial index 26 
radioisotope imaging devices 21- 2 
range filter 182 
Ranger 7 probe 4 
rank filtering 175- 84 

in Java 182-4 
maximum filter 180--2, 181 
median filter 175-9 
minimum filter 180--2, 180 
range filter 182 

reading images 68---79 
rectangular sampling pattern 25, 25 
redundancy 299, 300 
reference frame 321 
reflection" of an image 96 
region growing 263--{j, 263, 266 

in Java 264-5 
limitations 265-6 

region of interest (ROJ) 94-6 
region similarity 262 
remote execution model 59 
remote sensing 101 , 229, 298 
renderable execution model 59 



rendered execution model 59 
restoration cutoff frequency 224 
retina 13 
ROB model 27-9 

colour processing and 128 
conversion to HIS space 31 

ringing 214 
rods 13, 14-15 
root-mean-square (RMS) error 301 
rotating detectors 17 
rotation, image 96, 
run length encoding (RLE) 303 

sampling 20, 31-7 
sampling pattern 24-7, 25 
sampling rate 21 
satellites 298 
scotopic threshold 15 
scotopic vision 14- 15 
sector index 26 
segmentation 

applications 250- 1 
contextual 251, 259- 66 
definition 250 
non-contextual 251 
thresholding 251 - 9 
using grey level variance 267- 8, 267-8 
using other image properties 266--9 
using power spectrum 269, 269 

self-similarity 317 
shadow mask 80 
shrinking an image 96, 229, 230 
'SIF format' 73- 5 
signature 63 
sinc function 215 
single-valued function 109 
sinusoidal function 189,189 
sinusoidal variation 188- 90 
sliding window compression 307- 8 
Sobel edge detection 165 
Sobel kernels 165 
software-specialised formats 63 
spatial frequency 23,155,188-91 
spatial resolution 22-4, 22 
spectra of an image 195- 7 

display 206-7 
edges 209, 210 
simple periodic patterns 208, 209 
of simple shapes 211- 12, 211,212 
Spectral Probe 207, 208 

Spectrum 206-7 
SpectrumViewer 207, 207 

spherical aberration 10 
split and merge algorithm 266 
stationary detectors 17 
statistical coding 303-6 
stereoscopy 16 
storage 62- 8 

archival 62-3 
online 62 
problems in 298- 9 
short-term 62 
see also image compression 

storage media 62- 3 
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structuring element 271- 2, 272, 272-3 
closing 286-7,286 
erosion and 276-8 
fitting and hitting 273-4, 273 
hit and miss transform 287- 8, 288 
image dilation and 278-81, 279-81 
in Java 274-6, 274 
opening 284--{5, 285 

subsampling, 229- 30, 230 
subtraction, image 99-100 
synthetic aperture radar 3 

tagged formats 64 
templates 39 
third-order interpolation 241 
three-dimensional imaging 16--19 
thresholding 106, 106, 251- 9 

automatic selection 255 
between two overlapping peaks 255, 255 
colour 256-8 
definition 251 
edge maps created by 166, 166 
histogram analysis 254, 254 
importance of accurate selection 253, 253 
in Java 258-9 
of pixel grey level 251- 5 
in RGB space 256 

TIFF (Tagged Image File Format) 64 
tiled images 59 
top-hat transform 294, 295 
transform coding 310 
transformation algorithms 236-9 

unifonnity predicate 262 
union 283, 284 
Unisys 307 
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Unix 307 
unsharp masking 158 

video standards 21 
video, compression in 320-1 
visual system, human 15-16,26 
volume 38 
volumetric data 38, 3 
voxel38 

warping 245-8 
Wiener filter 225 
windowing 200- 3, 203 

windowing function 200 
World-Wide Web 299 
wrapper classes 77, 77 
writing images 68-79 

x-ray computed tomography (x-ray CT) 16-
17, 38 

x-rays 3, 3 

zero crossing 168 
zero-order interpolation 239, 239 
zero-phase-shift filters 213 
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